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Abstract—Analog and mixed-signal circuits are crucial for interfacing
digital systems with the real world, yet the layout design remains manual
and highly labor-intensive. Fully automated tools for layout design have
made significant progress in easing this burden, but they often restrict
flexibility and designer control. Interactive design flows combine the
strengths of both manual and automated design; however, designers still
face challenges in human-machine interaction, such as complex command
sets and manual code writing. In this paper, we introduce LayoutCopilot,
an LLM-empowered interactive layout design framework that addresses
this challenge by enabling the translation of high-level design intents
expressed in natural language into actionable commands. It also incor-
porates automated constraint extraction, reducing repetitive tasks and
enhancing interaction between designers and the tool. Our experiments
demonstrate that this framework undergoes validation for syntactic and
functional correctness and is successfully applied to real-world analog
design tasks, from constraint extraction to layout refinement, achieving
efficient designers’ involvement with reduced manual efforts.

Index Terms—analog layout synthesis, LLM-empowered, human-
machine interaction

I. INTRODUCTION & BACKGROUND

Analog and mixed-signal circuits play a critical role in interfacing
digital systems with the real world, yet the layout design remains
largely manual. This reliance on human expertise not only extends
design cycles but also increases costs. Moreover, performance degra-
dation occurs during the transition from schematic to layout due to
parasitics and other complexities, requiring iterative adjustments to
optimize performance. These challenges make it difficult to avoid the
final fine-tuning of the layout designers, as illustrated in Figure [T] A.

Efforts to automate analog layout design can be categorized into
three approaches. Industrial tools such as Cadence Virtuoso offer
scripting capabilities to automate repetitive tasks, but steep learning
curves hinder widespread adoption. In the academic realm, a series
of analog placement and routing algorithms have been proposed
to automate layout design [2]-[I4], leading to the development
of mature fully-automated tools such as MAGICAL and
ALIGN [18]. However, these tools often lack design flexibility, lim-
iting opportunities for designer intervention, as illustrated in Figure[T]
B. In response to these limitations, interactive design tools [19]—
have emerged, enabling designers to adjust layouts in real
time through command-based interfaces. These tools try to bridge
the gap between manual and automated processes. However, the
complexity of command sets can increase cognitive load, and coding
the commands remains a repetitive task.

Meanwhile, the rise of Large Language Models (LLMs) is offering
new possibilities for analog Electronic Design Automation (EDA)
tools. In analog EDA, LLMs are being applied to tasks such as
sizing [22]-{26]], topology synthesis [27]], [28], and layout genera-
tion [26], [29]. Moreover, conversational interfaces such as [30],

have simplified interactions with EDA tools, allowing designers to
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A. Workflow of Manual Analog Layout Design
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B. Workflow of Fully Automated Analog Layout Tools
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C. Workflow of LLM Empowered Interactive Layout Design
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e High-quality layout solutions after interactive adjustment
e Easy to use by taking natural language instructions
e Enhanced design experience and efficiency powered by LLM

Fig. 1: Workflows of manual, fully automated, and LLM-powered
interactive analog layout design tools (LayoutCopilot), comparing key
advantages and disadvantages.

engage with complex workflows through natural language, reducing
the need for extensive command scripting. Recent work like
also demonstrates how LLMs can facilitate the efficient design of
complex analog circuits by extracting and porting design knowledge
from literature, enhancing process and performance.

In this paper, we introduce LayoutCopilot, an LLM-empowered
framework for interactive analog layout design, aimed at enhancing
human-machine interaction [33]. As illustrated in Figure |I| C, our
approach reduces the manual effort required in interactive design by
translating natural language design intents into layout modification
commands. LayoutCopilot also incorporates automated constraint
extraction to reduce repetitive tasks further and enhance interaction.
Experimental results demonstrate that the design intent translation
was validated for correctness and functionality, accurately converting



intent into constraints across various cases. In real-world analog
design tasks, LayoutCopilot proved highly effective from constraint
extraction to layout refinement. It increases designer involvement
while reducing manual effort, accelerating the design process, and
improving efficiency.

The rest of the paper is organized as follows, [lI] explains the
details of the proposed framework; [III] validates the framework with
experimental results; concludes the paper.

II. FRAMEWORK

The workflow of LayoutCopilot consists of three main phases:
constraint extraction through LLM, initial solution generation via
a placement and routing (P&R) kernel, iterative optimization using
the interactive kernel, and the Abstract/Concrete Request Processors,
as illustrated in Figure The inputs to the entire flow—SPICE
netlist, instructions, knowledge, and design intents—are passed to
LayoutCopilot during both the initial solution generation and iterative
optimization phases.

A. Constraint Extraction

In the first phase, LayoutCopilot preprocesses the netlist to extract
design constraints that guide the subsequent P&R stages. The key
preprocessing step is constructing an intermediate representation,
called a signal graph, which reorganizes the connection relationship
of devices to make it more interpretable for the LLM. As shown in
Figure [3] the signal graph is built by focusing on the source (S) and
drain (D) connections of transistors, while ignoring gate and bulk
connections. This allows for the creation of a graph that captures
the paths from VDD to GND, grouping components accordingly.
Each transistor in the netlist as well as the ground and power nets
are represented as nodes. The purpose of this graph is to provide
a structured and readable format for the LLM, which improves its
ability to extract relevant constraints. After the building of the signal
graph, devices in the netlist are grouped based on their paths from
VDD to GND. This grouping allows the LLM to better understand
the structure of the circuit and extract constraints that are crucial for
layout quality.

For instance, as shown in Figure E} in the case of an OTA, after
preprocessing the netlist and determining the number of stages based
on the IO nets, symmetry analysis is performed within each stage.
This analysis involves identifying symmetrical pairs of devices, such
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Fig. 2: Interactive layout design flow with LayoutCopilot, which
includes constraint extraction, placement and routing (P&R) kernel,
and an interactive kernel for iterative layout modifications.

( Refined Layout )

Fig. 3: The process of generating a signal graph from the netlist, as
illustrated for an OTA circuit. Blue represents input-related devices
and nets, while orange represents output-related devices and nets.

as differential pairs, current mirrors, and other elements sized the
same. Using the knowledge of analog circuit design, layout design
principles, and provided examples, the LLM recognizes symmetrical
structures and labels them accordingly. While this paper focuses
on symmetry extraction, similar methods could be applied to other
tasks. With the right preprocessing (such as the signal graph) and
appropriate instructions, knowledge, and examples, LLMs could be
expanded to extract different types of constraints, enabling broader
applications in layout design.

B. P&R and Interactive Kernels

The P&R kernel [34]-[37] is responsible for generating an ini-
tial layout by utilizing both the netlist and specified constraints.
It generates the initial layout by solving a nonlinear optimization
problem, where the objective function typically minimizes the half-
perimeter wire length (HPWL) while integrating several basic con-
straints [34]. The routing process employs an A* algorithm-based
router, which finds the shortest paths while considering additional
routing constraints such as symmetry, routing congestion, and elec-
tromigration [35[]-[37].

The interactive kernel [[19], [20] facilitates real-time, user-driven
layout adjustments, building on earlier P&R kernels. This kernel
allows designers to interact with the layout through commands and
a graphical user interface (GUI). Designers can issue placement
commands such as move, swap, and symAdd to adjust component
positions and apply symmetry or array constraints. Similarly, routing
can be modified using commands like reroute, wireWidth,
and netPriority enabling adjustments to wire paths, widths,
and spacing for performance tuning [19], [20]. The interactive
kernel bridges the gap between fully automated tools and manual
adjustments, offering designers greater control and flexibility while
reducing repetitive tasks.

C. Abstract/Concrete Request Processor

After generating the initial layout, further interactive optimization
is necessary as the initial solution may not fully satisfy all design-
specific performance requirements. The Abstract/Concrete Request
Processor manages this iterative refinement by translating high-level
design intents into executable layout commands. It leverages a multi-
agent system to handle the complexity of converting abstract requests,
such as improving symmetry or matching, into concrete commands
for the layout tool.

The Abstract Request Processor is structured as a multi-agent
system that handles high-level, conceptual requests from designers.
These requests often require deeper analysis and knowledge retrieval
before they can be transformed into actionable commands. The



system includes a task classifier agent that determines whether a
designer’s input is an abstract or concrete request. For abstract tasks,
it passes the input to the Analyzer Agent, which draws on a dedicated
knowledge base containing analog design principles and previous
solutions. The Analyzer Agent breaks down abstract design intents,
such as “enhance matching” into specific layout strategies, includ-
ing modifying placement and routing. After the initial solution is
proposed, the Solution Refiner Agent incorporates designer feedback
to refine and optimize the proposed modifications, ensuring that the
final solution is closely aligned with the designer’s intent. Finally,
the Solution Adapter Agent converts the determined modifications
into concrete requests using the netlist information. This allows the
abstract intent to be transformed into a series of executable steps,
ready for the next stage.

The Concrete Request Processor focuses on translating the concrete
tasks into executable layout commands. The Task Splitter Agent first
decomposes each concrete request into a series of smaller, well-
defined sub-tasks that correspond to specific commands in the layout
tool. The Code Generator Agent plays a central role here, ensuring
that each command adheres to the syntax and operational logic
required by the layout tools. Finally, the commands are combined
to form code that directly influences placement and routing. The
interactive kernel then takes in these commands to adjust the layout
in real-time, and the system continues to iterate based on designer
feedback to achieve the desired results.

D. Prompt Design and Configurations of Agents

Both the Abstract and Concrete Request Processors use prompt
engineering techniques, such as chain-of-thought, control flow, and
self-refine, to handle tasks efficiently. These shared strategies help
agents break down complex tasks into manageable steps, respond
correctly in complex scenarios, and validate outputs at each stage.
On the other hand, the prompts are also tailored to the unique
roles of each processor. In the Abstract Request Processor, agents
act like experienced analog designers, focusing on high-level tasks
and generating design suggestions; the Concrete Request Processor
focuses on translating these refined suggestions into precise, exe-
cutable commands. The prompts in this case emphasize correctness
in syntax and logic, ensuring seamless integration into the layout flow.
To illustrate the design of the prompt more concretely, we provide
the Solution Refiner Agent’s prompt (the most complex agent) as an
example El

III. EXPERIMENTAL RESULTS

In this section, we conduct experiments focusing on both concrete
requests and a full design flow, demonstrating the accuracy and
stability of LayoutCopilot in generating syntactically and logically
correct commands, as well as its ability to handle comprehensive
circuit design tasks. LayoutCopilot is compatible with various LLMs
and layout tools, allowing for flexible deployment in different envi-
ronments. For our experiments, we test LayoutCopilot with multiple
versions of leading LLMs, including GPT-3.5 [38], GPT-4 [39]], and
Claude3 |]Zfi5[], to demonstrate its versatility.

A. Batch Testing For Concrete Request Processor

To evaluate the robustness and accuracy of the Concrete Request
Processor, we conducted a series of tests focusing on two key aspects:
Sanity Check and Functionality Check.

Thttps://github.com/PKU-IDEA/LayoutCopilot-Prompt-Example

TABLE I: Sanity checks and comparison for single-agent with
instruction vs. multi-agent.

Category Single-agent
GPT-3.,5 | GPT-4 | Claude 3 Avg.
Formatting | 71.14% | 90.91% | 99.25% | 87.20%
Validity 91.36% | 93.60% | 95.44% | 93.47%
Syntax 67.11% | 88.87% | 95.24% | 83.74%
Logic 66.44% | 83.04% | 91.67% | 80.38%
Overall 66.27% | 8291% | 90.77% | 79.98%
Category Multi-agent
GPT-3.5 | GPT-4 | Claude 3 Avg.
Formatting | 95.38% | 99.76% | 99.92% | 98.26%
Validity 98.24% | 99.28% | 98.88% | 98.77%
Syntax 92.65% | 97.20% | 96.96% | 95.60%
Logic 91.24% | 94.24% | 98.80% | 94.76%
Overall 90.92% | 93.92% | 96.80% | 93.75%

1) Sanity Check: In the Sanity Check, we evaluated the ability
of the processor to generate commands that adhere to syntax and
logic rules. Out of the 1,250 requests, 1,134 were valid and could be
transformed into commands requiring between 5 and 40 steps, while
others were invalid and should be detected and flagged by Layout-
Copilot. We tested both a single-agent and multi-agent configuration,
where the multi-agent setup specialized each agent for different tasks
as described in [[IZC] compared to the single-agent approach that
merged all tasks into one LLM agent. Metrics and rules are the
same as those defined in [33]], which are omitted here due to space
limitations. As summarized in Table |} the multi-agent configuration
consistently outperformed the single-agent setup, demonstrating an
overall correctness rate of 96.80% in handling concrete tasks when
using Claude-3 [40], particularly in identifying and rejecting invalid
requests. The results show that the multi-agent system is more
effective in managing the complexity of concrete requests by ensuring
commands are both syntactically logically correct [33].

2) Functionality Check: To further assess the functional accuracy
of the generated commands, we conducted a Functionality Check on
a random subset of 25 valid requests that had passed the sanity check.
These cases were manually inspected to verify whether the commands
generated by the Concrete Request Processor successfully executed
the intended design tasks. The results were classified into three levels:
Level A is functionally correct with clear reasoning. Level B has
minor functional flaws but clear reasoning, allowing designers to fix
issues through LLM interaction. Level C has both functional and

I Level A
I Level B
I LevelC

Percentage %

GPT-4 Claude-3 GPT-3.5
w/o Instruction

Fig. 4: Functionality check with different LLM engines across
instructional conditions. The explanation of levels A, B, and C is

provided in Section [TT-A2}

GPT-4 Claude-3 GPT-3.5
w/ Instruction
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Fig. 5: Iterative layout optimization process for the OTA from the
initial layout with constraints from LLMs to the final layout after
routing.

conceptual flaws, offering little help in problem diagnosis. As shown
in Figure {4] the instruction significantly reduced the proportion of
Level C outputs, with most LLM engines producing Level A outputs
in over 90% of cases when instructions are provided. Additionally,
the percentage of C level under instructed conditions is near zero
regardless of the LLM engine used. This demonstrates that the
concrete task processor can get good results under conditions where
various LLMs are used as engines, even if there are gaps in the
capabilities of these LLM engines [33].

B. Case Study: Full Flow Demonstration

In this section, we demonstrate the full layout design process for an
operational transconductance amplifier (OTA) using LayoutCopilot,
focusing on constraint extraction, iterative layout refinement, and the
post-simulation results. Another case for a comparator can be found
in [33]], which is omitted here due to space limitations.

For the OTA’s gain path, we applied the constraint extractor, which
combines a signal-graph approach with LLM-powered analysis. The
layout generated after running the P&R kernel with automatically
extracted constraints, shown in Figure |§| (a), demonstrates that most
devices exhibit good symmetry. However, a few devices placed
in the upper-left and upper-right corners of the layout represent
an unreasonable placement pattern. This indicates that while the
constraints extracted by the LLM are generally effective, further
iterative optimization is needed.

The interactive layout optimization proceeded through multiple
iterations, starting with the initial solution generated based on the
LLM-extracted constraints. The process is visualized in four stages,
as shown in Figure [5] We conveyed the aforementioned observations
from Figure [5| (a) using natural language to the Abstract Request
Processor and implemented the modification intent of adding and
removing some of the symmetry constraints using the Concrete Re-
quest Processor. Figure |§| (b) shows the result after the modification,

TABLE II: Comparison of performance metrics for schematic, MAG-
ICAL [I5]-[I7] without constraints, initial layout with LLM con-
straints (placement shown in Figure |§| (a)), and the layout after
interactive modification.

) . | MAGICAL [15}-{17] Initial layout -
‘ Metrics ‘ Schematic w/o Constraints w/ LLM Constraints Final
Gain (dB) 38.63 -8.75 38.55 38.26
UGB (MHz) 6.85 - 4.65 4.42
CMRR (dB) - 273 429 58.7
PM (degree) 70.98 - 69.15 76.28

following which the P&R kernel was invoked to perform routing,
as seen in Figure [ (c). Finally, by adjusting the routing priorities,
specifically increasing the width of the power and ground lines to
improve performance, we obtained the final layout, shown in Figure 5]
(d). The detailed dialog process can be found in [33]]; due to space
constraints, it is not elaborated here.

To evaluate the circuit’s post-layout performance, we conducted
simulations under TSMC 40nm technology using Cadence Virtuoso
and Mentor Graphics Calibre. The performance is shown in Table
M In the layout generated by MAGICAL without constraints, the
performance metrics show significant degradation due to excessive
parasitics compared to the schematic. Due to excessive parasitic,
the Gain was negative, the unity-gain bandwidth (UGB) and phase
margin (PM) were both substantially poor, and the common-mode
rejection ratio (CMRR) was significantly low. However, with the
LLM-extracted constraints, the initial layout showed a marked im-
provement: the Gain was close to the schematic and after modification
results, while the CMRR and PM were still below expected levels.
Moreover, after applying interactive modifications, the optimized lay-
out exhibited a minimal reduction in Gain and UGB while achieving
substantial improvements in CMRR and PM. These results validate
the effectiveness of our proposed flow in optimizing layouts through
natural language interaction. The post-simulation improvements con-
firm that LayoutCopilot not only reduces the learning curve and
coding effort for designers but also enables them to refine the layout
more effectively, demonstrating its potential as a helpful tool for
advanced interactive analog layout design.

IV. CONCLUSION

The proposed LLM-empowered Interactive Layout Design Frame-
work, LayoutCopilot, effectively enhances human-machine interac-
tion in analog layout design. By translating high-level design intents
expressed in natural language into actionable layout modifications,
LayoutCopilot addresses the human-machine interaction challenges
in interactive design flows. The integration of automated constraint
extraction reduces repetitive tasks, allowing designers to focus on
more strategic aspects of the process. Our experiments validate
the correctness of design intent translation and demonstrate Lay-
outCopilot’s application in real-world analog tasks, from constraint
extraction to layout refinement. This framework not only ensures
a high level of designer involvement but also significantly reduces
manual effort, enhancing both efficiency and design flexibility. Future
work will focus on optimizing the translation process and expanding
the framework’s applicability to broader design workflows.
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