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Abstract— Analog computing-in-memory (CIM) has been
widely explored for computing neural networks (NNs) efficiently.
However, most analog CIM implementations trade compute
accuracy for energy efficiency. The low accuracy restricts the
practical application of analog CIM. In this article, a current-
programming CIM that unifies the weight programming and
computing in the current domain is proposed to address this
dilemma. The enabled technique is a novel 3-transistor 1-
capacitor (3T1C) embedded dynamic random access memory
(eDRAM) cell. The current-programming mechanism and the
dynamic-cascode read structure of the 3T1C cell make it immune
to transistor-level non-idealities, including nonlinear I–V , thresh-
old voltage variations, and short-channel effect. Therefore, the
cell enables multi-level-cell (MLC) operations without any cal-
ibration, supporting eight current-weight levels (0–700 nA).
In addition, a voltage–current two-step programming scheme is
proposed to boost the sub-microamphere current-weight writing
speed. To support signed 4-b weights, a pseudo-differential CIM
cell composed of two 3T1C MLCs is developed. Fabricated in
a 65-nm CMOS, the prototype demonstrates 2.2× reduction
in macro-level variation through current programming. Bene-
fiting from sub-microamphere compute currents, the prototype
achieves the 4-b energy efficiencies of 233–304 TOPS/W. With a
refresh interval of 0.4 ms, the macro achieves >90% inference
accuracy on CIFAR10.

Index Terms— Analog, computing-in-memory (CIM), current
programming, dynamic cascode, embedded dynamic random
access memory (eDRAM), multi-level-cell (MLC), neural network
(NN), variation.
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I. INTRODUCTION

DEEP neural network (DNN) has achieved unprecedented
success in various tasks, such as vision and speech

processing [1], [2]. The deployment of the DNN model to edge
brings local intelligence, addressing the increasing concerns of
communication bandwidth, latency, and privacy. However, the
performance of DNN relies on its growing computational com-
plexity, which is dominated by matrix-vector multiplications
(MVMs) and corresponding data movement/accessing [3]. The
intensive MVMs and data movement of the recent DNN model
have pushed the conventional hardware accelerator to their
energy-efficiency limits. With limited computing resources and
energy budget, the smart edge devices desire a new hardware
solution.

The analog computing-in-memory (CIM) architecture holds
great promise as an energy-efficient solution for local infer-
ence [4]. With the 2-D weight matrix stored in 2-D bit-cell
array and the input vectors given via word lines, analog CIM
macro performs the MVM inside the memory array, and the
MVM results are developed directly on bitlines. In contrast to
conventional memory that only allow one-row access, the CIM
architecture enables multi-row access, effectively amortizing
the bitline switching energy [5]. In addition, by implementing
the multiply-and-accumulate (MAC) function using compact
bit cells, the computing density is significantly enhanced.
Early CIM exploits the standard 6T/8T static random access
memory (SRAM) bit cells to charge/discharge bitline for
analog computing [6], [7], [8], [9]; thus, a high storage
density is achieved. These CIM designs, which utilize the
transistor currents in the bit cells to perform computing,
are classified as current-based CIM. However, the compute
signal-to-noise ratio (SNR) in current-based CIM is adversely
affected by large variations of the minimum-size transistors
used in the bit cells and the read-disturb issue. Specifically,
as more rows are simultaneously activated for computing, the
SNR in current-based CIM experiences degradation. In other
words, there exists a fundamental energy efficiency versus
compute accuracy trade-off in the analog CIM [10], [11], [12],
as illustrated in Fig. 1. Consequently, achieving both high
energy efficiency and high compute accuracy simultaneously
becomes challenging for the analog CIM macro.
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Fig. 1. Fundamental energy efficiency versus compute accuracy trade-off in
analog CIM and the design target of the proposed design.

Efforts have been made to improve the energy
efficiency, SNR, and density of analog CIM. The
capacitor-based bit cells are proposed for high-SNR analog
computing [13], [14], [15], [16]. Due to the decoupled
write–read ports and robust capacitor-based computing in
these bit cells, the read-disturb issue is addressed, and more
rows can be activated simultaneously, bringing higher energy
efficiency and process–voltage–temperature (PVT) robustness.
However, the custom-designed 6T+ bit cell in capacitor-based
CIM introduces a significant area overhead, trading density
for energy efficiency, and SNR. The embedded dynamic
random access memory (eDRAM), especially with multi-level
cell (MLC), provides a high-density solution with only 1–4
transistors per cell [17], [18], [19], [20], [21], [22]. This
makes eDRAM an attractive option for analog CIM designs.
However, similar to SRAM-based analog CIM, the challenge
of simultaneously improving energy efficiency and accuracy
persists in eDRAM-based analog CIM.

In summary, SRAM/eDRAM current-based designs, which
utilize the transistor currents within the compact cells for
computing, provide area- and energy-efficient solutions for
analog CIM. However, improving the computing accuracy of
current-based CIM faces challenges due to threshold volt-
age (Vt ) variations of the transistors in cells. This compute
accuracy limitation in current-based CIM is rooted in the
inconsistency of weight representations during programming
and computing: weights are programed and stored as fixed
voltages, while transistor currents are used for computation.
To fundamentally surmount this dilemma faced by current-
based CIM, we propose a current-programming eDRAM CIM
that unifies the weight programming and computing in the
current domain. The enabling technique is a novel 3-transistor
1-capacitor (3T1C) current-programed dynamic-cascode MLC
eDRAM design. It confers several key merits.

1) The eDRAM cell is programed by the weight current
directly with the self-calibrated voltage generated on the
storage capacitor; it essentially stores the weight current
instead of a fixed voltage, thus mitigating Vt variation
and nonlinear transistor I –V impacts.

2) A dynamic-cascode read structure is proposed to signif-
icantly reduce the VRBL sensitivity while not requiring
any bias voltage.

3) Thanks to the accurately programed cell, it supports
eight current levels ranging from 0 to 700 nA in a

single cell without any calibration, largely boosting
computation density.

4) A voltage–current two-step programming scheme sig-
nificantly boosts the sub-microamphere current-weight
writing speed.

Combining these merits, the proposed MLC eDRAM CIM
is naturally immune to transistor-level non-idealities, thus
allowing a small LSB weight current of only 100 nA.
To support 4-b signed weight, a 4-b CIM cell composed of
two MLCs is developed, containing 15 current levels (from
−700 to 700 nA).

This article is an extension of [23] and is organized as fol-
lows. Section II reviews the recent CIM designs and analyzes
the conventional voltage-programed cell and the proposed
current-programed cell. Section III presents the overall design
of current-programming CIM. Section IV shows the measured
results. Finally, Section V concludes this article.

II. CIM REVIEW AND DESIGN ANALYSIS

A. CIM Macro Review

To compute the DNN more efficiently and accurately, var-
ious CIM macros have been proposed in recent years. These
works can be categorized into two groups based on whether
the macro performs MAC operations using digital or analog
circuit, as illustrated in Fig. 2.

In digital CIM macro, the logic gates are placed near the
memory cells to perform bitwise multiplications [24], [25],
[26], [27], [28]. The accumulations are performed using an
adder tree. Furthermore, multi-bit MACs can be extended
through the utilization of near-memory shift-and-add circuits.
Digital CIM offers excellent robustness due to its fully digital
operations. However, its density is constrained by the large
area occupied by the adder tree. In addition, the digital CIM
only exhibits energy efficiency benefits at advanced technology
nodes [27], [28], as it relies on full-swing digital logic for
computations.

On the other hand, analog CIM demonstrates higher energy
efficiency due to the utilization of high-parallelism ana-
log MACs. However, the analog MACs are susceptible to
transistor-level non-idealities, which limit the computing accu-
racy. In analog CIM, accessing more rows simultaneously
enhances energy efficiency but reduces the voltage swing
of each MAC output, resulting in a lower compute SNR.
This is the fundamental energy efficiency versus compute
accuracy trade-off in analog CIM; the knob is the number
of simultaneous accessed rows. For current-based CIM, the
maximum achievable SNR is limited by Vt variations of
the minimum-size transistors within the bit cell. Similarly,
in capacitor-based CIM, the maximum achievable SNR is
limited by capacitor mismatches. Compared with the cur-
rent mismatch of small access transistors in the bit cell,
capacitors exhibit better matching, resulting in a higher SNR.
However, the utilization of custom-designed 6T+ bit-cells
in capacitor-based CIM leads to a significant area overhead,
which limits its density. In contrast, current-based CIM can be
implemented using compact 6/8T SRAM [6], [7], [8], [9], [29],
[30] or 2/3T gain-cell eDRAM [19], [21]. With the goal of
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Fig. 2. Comparison of recent analog and digital CIMs.

achieving high-density analog CIM, we focus on current-based
CIM and address its SNR limitations in this article.

B. SNR Limit of Voltage-Programed Cell

As mentioned before, in analog CIM, the trade-off between
energy efficiency and compute accuracy is determined by
the number of simultaneously accessed rows. Specifically, for
current-based CIM, this trade-off is also controlled by the
compute currents. In current-based CIM, all compute currents
discharge the bitline capacitance to perform accumulation.
With the same bitline capacitance, smaller compute currents
allow more cells to be activated without clipping errors, thus
brings higher energy efficiency. However, when operated in
small currents, the compute SNR is severely limited due to
transistor Vt variations. The cause is rooted in the incon-
sistency of weight representations during programming and
computing: weights are programed as fixed voltages Vwrite,
while transistor currents Icomp_v are used for computation,
as shown in Fig. 3(a). In the conventional memory, SRAM
and eDRAM cells follow a voltage-programed and current-
read style. For SRAM, the bit cells are biased to bi-stable state
during programming, and the currents of access transistors are
used for reading. For eDRAM, two-level voltages are written
to the storage node, and its corresponding current is used for
reading. Due to the high ON/OFF ratio of transistors and only
one row is accessed, the cell value can be easily readout by the
sense amplifier. However, in the presence of spatial Vt vari-
ations, the voltage-programed cells are no longer suitable for
the analog CIM architecture, which is operated in a multi-row
accessing mode. When the compute transistor operates in the
near-threshold region to enable parallel access of more rows,
the voltage-programming and current-computing process can
be modeled as follows:

Icomp_v = I0 · exp
(

Vwrite − Vt

nkT/q

)
(1)

where I0 is proportional to the W /L of compute transistor, n is
the slope factor, k is Boltzmann’s constant, T is the absolute
temperature, and q is the electron charge. In the presence of
threshold voltage variations, (1) transforms into

Icomp_v + icomp_v = I0 · exp
(

Vwrite − (Vt + vt )

nkT/q

)
(2)

Fig. 3. (a) Concept of voltage programming. (b) Simulated energy efficiency,
compute SNR, and gm /Icomp versus Vwrite of current-based analog CIM.

where vt is the threshold voltage variation, and icomp_v is
the corresponding current variation. Therefore, the compute
SNR is degraded even if Vwrite can be programed precisely.
We define SNRV = I 2

comp_v/σ
2
icomp_v

as the SNR of voltage-
programming CIM. Using a 1st-order Taylor series expansion
for (2), we get

icomp_v ≈ −vt ·
∂ Icomp_v

∂Vt
= −vt ·

Icomp_v

nkT/q
= −vt · gm . (3)
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Then, the SNRV can be calculated as follows:

SNRV,dB = 10 lg
I 2
comp_v

σ 2
icomp_v

= 10 lg
1

(gm/Icomp_v)
2 ·

1
σ 2

vt

(4)

where gm = (Icomp_v/(nkT/q)) is the trans-conductance of
compute transistor M1. As the transistor operates in the
subthreshold region, gm /Icomp_v gradually increases, resulting
in improved energy efficiency for computing. However, this
brings a decreased SNR. Assuming (CBL = 100 fF, the read-
word-line (RWL) pulsewidth = 200 ps, the bitline precharge
voltage = 1.0 V, and the bitline dynamic range = 0.8 V),
we conducted a simulation using a 65-nm CMOS process.
Fig. 3(b) shows the simulated SNRV and energy efficiency as
a function of Vwrite. The results clearly demonstrate that Vwrite
(or the corresponding compute current) plays a crucial role in
controlling the trade-off between energy efficiency and SNRV .
When Vwrite lower than 0.6 V, a >1000 TOPS/W energy
efficiency can be achieved, but SNRV is lower than 10 dB.
Moreover, even if Vwrite is set to 1.0 V, SNRV is only 18 dB,
which clearly demonstrates the restricted precision of the
voltage-programming scheme.

C. Proposed Current-Programed Cell

To fundamentally address the Vt -variation-induced
SNR degradation in current-based CIM, we proposed a
current-programed eDRAM cell, which unifies the weight
programming and computing in the current domain. This
innovative approach significantly enhances the maximum
achievable SNR of current-based CIM. The simplified model
of the proposed current-programed cell is shown in Fig. 4(a).
The operation of the current-programed eDRAM cell is as
follows. In the programming phase, the transistor M1 is
diode connected, and the programming current Iwrite flows
through M1 with the corresponding VGS developed. Different
from a fixed VGS/Vwrite in voltage programming, this VGS
can be viewed as a self-calibrated value that tackles the
Vt variation. Thus, the self-calibrated VGS, essentially the
voltage representation of the corresponding Iwrite, can be
stored. Ideally, Icomp of M1 is consistent with the programed
value Iwrite, regardless of the Vt variations. In practice, there
are still noise sources that must be addressed to achieve a
high SNR. The current-programming and current-computing
process can be modeled as follows:

Icomp_c = Iwrite + iwrite + ie

= I0 · exp

((
Vcal + v j + vn + vs

)
− (Vt + vt )

nkT/q

)
(5)

where Icomp_c is the compute current, Iwrite is the programming
current, iwrite is the variation of programming current, Vcal
is the self-calibrated storage-node voltage, which depends on
the Iwrite + iwrite and Vt + vt , and ie is the corresponding
current-domain noise induced by the charge injection v j ,
thermal noise vn , and settling error vs . The charge injection

Fig. 4. (a) Concept of current programming. (b) Simulated SNR versus
added capacitor at storage node. (c) Simulated SNR versus settling error.

and thermal noise can be derived as follows [31]:

v j = p
W LCox(VW W L − Vcal − Vt )

CSN
, σvn =

√
kT
CSN

(6)

where CSN is the capacitance of storage node, 0 ≤ p ≤ 1 is
constant that depends on the transition speed and terminal
impedances of the switch transistor M3, Cox is the gate oxide
capacitance per unit area, W and L are the width and length of
M3, and VWWL is the control-signal voltage of M3. We define
SNRC as the SNR of the current-programming CIM, which
can be approximated by

SNRc ≈
I 2
write

σ 2
iwrite

+ σ 2
ie

=

[
1

SNRW
+

1
SNRE

]−1

(7)

where SNRW = I 2
write/σ 2

iwrite
is limited by write transistor M4,

SNRE = I 2
write/σ 2

ie
indicates the impact due to sampling and

settling errors. Due to the write transistor only occupying a
small part of the macro area, up-sizing this transistor can
suppress its current variation at a small cost. To tackle with
charge injection and KT/C noise, the capacity of CSN need
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Fig. 5. Simulated 100-nA computing-current variation of (a) voltage-pro-
gramed cell and (b) current-programed cell.

Fig. 6. Simulated programming linearity of (a) voltage-programed cell and
(b) current-programed cell.

to be increased, as shown in Fig. 4(b). To achieve a high
SNRC without much area overhead, CSN is set to 10 fF, which
is implemented by the metal-oxide-metal (MOM) capacitor.
In addition, the added CSN can enhance the cell retention.
SNRC versus settling error is shown in Fig. 4(c). While a
<4-mV settling error is guaranteed, SNRC is higher 30 dB.
To speed up the sub-microamphere-current programming and
keep a small settling error, a voltage–current two-step write
driver is proposed, the detailed operations of which are
described in Section III-C. As shown in Fig. 5, when operated
at a compute current of 100 nA, the current-programed cell
presents a ∼10× variation reduction (20-dB SNR improve-
ment) compared with the conventional cell design.

In addition to improve the SNR of current computing, the
current programming can also help improving the program-
ming linearity of MLC, as shown in Fig. 6. For conventional

Fig. 7. (a) Schematic and (b) simulated Icomp versus VRBL of the conventional
and proposed dynamic-cascode read structure.

voltage-programming, the nonlinear transistor I –V poses chal-
lenges for the design of an MLC gain cell: calibration is
required, bringing extra area and power overhead. In addition,
the simple calibration that is only for transistor I –V non-
linearity is not sufficient to write the MLC precisely in the
presence of Vt variation. With the proposed current program-
ming technique, an eight-level (0–700 nA) MLC eDRAM cell
is designed without calibration.

D. Dynamic-Cascode Read Structure

Another issue in current-based CIM is the Icomp sensitivity
to VRBL contributed by the short-channel effect (i.e., the limited
output impedance), resulting in a nonlinear activation function.
A common circuit technique to tackle this issue is the cas-
code stage. However, the conventional cascode stage requires
dedicated biasing, which is impractical for the memory array.
This issue is addressed by the proposed dynamic-cascode read
structure, which consists of one low threshold voltage (LVT)
cascode transistor and one high threshold voltage (HVT) main
transistor with gates connected together [32], [33], as shown
in Fig. 7. In the dynamic-cascode read structure, the compute
currents flow through the HVT transistor and LVT transistor
are equal, which can be formulated as follows:

Icomp = I0 · exp

((
Vcal − Vds,hvt

)
− Vt,lvt

nkT/q

)

= I0 · exp

((
Vcal − Vt,hvt

nkT/q

)
(8)

where Vds,hvt is the drain–source voltage of HVT transistor,
Vt,lvt is the threshold voltage of LVT transistor, and Vt,hvt is
the threshold voltage of HVT transistor. Then, we can get

Vcal − Vds,hvt − Vt,lvt = Vcal − Vt,hvt (9)
Vds,hvt = Vt,hvt − Vt,lvt. (10)

It can be seen that Vds,hvt equal to the threshold differ-
ence between HVT and LVT transistors (∼200 mV in
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Fig. 8. Schematic and operation table of 4-b CIM cell, which composed of
two 3T1C MLCs; layout of 3T1C MLC.

65-nm CMOS), ensuring the HVT device’s operation region.
With the proposed dynamic-cascode stage, Icomp sensitivity to
VRBL is reduced by 4× compared with the conventional read
structure.

III. PROPOSED CURRENT-PROGRAMMING CIM MACRO

A. 3T1C MLC and 4-b CIM Cell

A 3T1C calibration-free eight-level MLC is developed
by combining the current-programming and dynamic-cascode
techniques, as shown in Fig. 8. Without additional bias
voltages, the proposed MLC addresses key issues faced by
conventional current-based CIM designs, including the nonlin-
ear I –V , Vt variations, and short-channel effect. In addition,
with the sub-microamphere compute currents, the energy effi-
ciency of analog MAC is significantly boosted. The layout
of the 3T1C cell occupies an area of 6 µm2, which is
dominated by the added 10-fF MOM capacitor from metal-4
to metal-7. Fig. 9 shows the simulated compute currents
drifted from 0 to 0.4 ms at FF corner and 80 ◦C when
100-/400-/700-nA programming currents are applied. The
added capacitor effectively brings more accurate compute
currents and smaller drifts (from 17.1-57.5% to 1.5-20.4%)
during 0.4-ms retention time. To support 4-b signed weight and
4-b unsigned input, a 4-b CIM cell composed of two MLCs is
developed, containing 15 current levels (from −700 to 700 nA)
and supporting 16 RWL pulsewidth levels. These two MLCs

Fig. 9. Simulated computing currents drifted from 0 to 0.4 ms at FF corner
and 80 ◦C when 100-/400-/700-nA programming currents are applied.

are pseudo-differentially combined, providing noise immunity
against unwanted charge injection/coupling.

B. Overall Architecture, DTC, and ADC Design

Fig. 10 presents the overall architecture of the pro-
posed eDRAM CIM macro, which comprises a 64 × 64.4-b
cell array, the voltage–current two-step write drivers, the
5-b successive-approximation-register (SAR) analog-to-digital
converters (ADCs), and 4-b digital-to-time converters (DTCs)
for CIM operations, and control blocks for writing and compu-
tation (WCTRL, CCTRL). During one computing cycle (180
ns), the macro operations are divided into three phases. In
the first phase, the BL capacitance and the capacitive digital-
to-analog converter (CDAC) in SAR ADC are connected and
precharged to VPCH. Then, all DTCs are enabled and generate
the corresponding RWL pulse width. These RWL pulses are
multiplied by the stored current in the CIM cells. In each CIM
column, 64 CIM cells discharges the BL/BLb, performing
the current-based MACs. In the third phase, the sampled
analog-MAC value is quantized by the 5-b SAR ADC.

In the CIM mode, the RWL pulsewidth is modulated based
on the digital input code (A[3:0]) by a DTC. To reduce the
RWL pulsewidth mismatch between 64 input channels, all
DTCs generate the RWL pulses from the shared pulsewidth
modulated (PWM) signal. The pulse generation and selection
methodology are adapted from [34]. Five global PWM signals
(TD0–TD15) are taped out from a tunable delay line, with its
delay controlled by off-chip bias for testing purposes. The
pulsewidth of each signal increments by 5 × t0 and varies
within the range of 0–15 × t0. Here, t0 represents the minimum
possible pulsewidth, which is the delay of the tunable delay
unit. Each DTC selects and generates the corresponding RWL
pulse from (TD0 to TD15) using a 4:1 MUX and two 2:1
MUXs in two phases: the LSB phase and the MSB phase.
In the LSB phase, the pulsewidth is incremented by 1 × t0,
while in the MSB phase, it gets incremented by 4 × t0.
A control signal (TD12) switches between the two phases.
The generated pulsewidth of the first phase is determined by
two LSB bits of A, and the second phase is determined by
two MSB bits. Compared with the one-phase architecture that
selects 16 timing signals with a 16:1 MUX, the two-phase
design reduces the number of global timing signals to route
and the power consumption.

During computation, the common-mode voltage of analog-
MAC varies as the CIM cells discharge the BL capacitance.
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Fig. 10. Overall architecture and timing of the proposed current-programming CIM, and the schematic of ADC and DTC.

This variation can introduce offset changes in the comparator
of the ADC and result in quantization errors. To reduce
this effect, a current–source-assisted dynamic comparator
is adopted to reduce offset sensitivity to input common-
mode voltage [35]. This dynamic comparator incorporates
a cascode-biased MOS transistor Mb at the bottom of the
switch MOS. By operating Mb in the saturation region, the
change of the drain–source voltage has only a slight influence
on the drain current. As a result, it maintains the effective
voltage of the input pair near a constant value even when
the common-mode voltage changes, thereby minimizing the
impact on offset.

C. Voltage–Current Two-Step Write Driver

Fig. 11 describes the schematic and operation of the
voltage–current two-step write driver. The purpose of the
driver is to reduce the latency caused by the small-current
programming. Although the small operating current brings
higher energy efficiency, driving the BL parasitics (50 fF)
with a small current (100 nA) results in a long settling time
(∼400 ns). To speed it up, the driver uses a two-step process:
voltage-mode coarse writing followed by current-mode fine
writing. In the first step, the voltage-write block drives the
BL/BLb to VW or VSS (depending on the weight value)
within 5 ns. VW (0.52 V) is VGS of computing transistors,
when 100 nA Iwrite is applied. Following this, current-mode
fine writing is used to accurately program the cell current to
the target value. In addition, in order to avoid a slow startup of
the current source and keep the current-write transistor in the
saturated region, a replica cell is used to provide an operation
point during write mode. As shown in Fig. 12, the simulation
reveals that all current levels can be settled within 60 ns,
indicating a >6× speed up of the current programming.

IV. MEASUREMENT RESULTS

The prototype is implemented in a 65-nm CMOS. Fig. 13
shows the micrograph of the test chip and the test environment.
The CIM macro has a capacity of 16 kb at the footprint of
0.1536 mm2. The operating voltages of macro are 1.0-V digital
block (CCTRL and DTC), 0.9-V cell array (BL precharge),

Fig. 11. Schematic of the proposed voltage–current two-step write driver.

and 0.7-V ADC. In the CIM mode, each computing cycle lasts
for 180 ns, during which the macro computes 64 independent
64-input MACs. Consequently, the throughput is calculated as
2 × 64 × 64/180 ns = 45.5 GOPS (1 MAC = 2 operations).
The computing density is 296.3 GOPS/mm2. To measure the
computing energy, all weights are written to “+7”, and all
inputs are configured to “+15”,“ which allows maximum
discharge of the bitline. With the number of activated inputs
are swept from 25% to 75%, the measured 4-b-MAC energy
efficiencies are 233–304 TOPS/W, as shown in Fig. 14(a).
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Fig. 12. Simulated waveforms of the voltage–current two-step write driver.
(a) Simulated BL voltage and control signals. (b) Simulated BL current.

Fig. 14(b) shows the energy breakdown of 25% and 75%
activated inputs. The energy consumed by the ADC is ∼19
pJ in both 25% and 75% activated inputs. As the activated
input varies from 25% to 75%, the energy consumed on
the bitline increases from 1.7 to 4.2 pJ due to larger bitline
swing. Similarly, the energy consumed by CCTRL and DTC
are increased from 6 to 12.7 pJ for driving more RWL.
Table I shows the comparison of recent eDRAM-CIM works
and SRAM-CIM (current based) works for neural network
(NN) acceleration. The proposed current-programming CIM
achieves high energy efficiency.

A. Characteristics of Current Programming

To verify the effectiveness of the proposed programming
scheme, the CIM transfer functions with voltage and current
programming are measured and compared. The transfer func-
tions are measured according to the following steps. First, the
weight data in all CIM cells are written to “+1/−1” using
the voltage–current two-step write drivers, and an activation
pattern is applied to the input registers. Once the data are
prepared, the CIM macro performs computation, generating
the corresponding analog-MAC outputs. These outputs are
then observed and quantized by the ADCs. This process is
repeated for each activation pattern (from all “0” to all “15”)
to construct the CIM transfer function. During testing, the
DTC output pulsewidth is adjusted by an off-chip bias to

Fig. 13. (a) Die micrograph. (b) Test environment.

Fig. 14. Measured (a) energy efficiency as a function of activated inputs and
(b) energy breakdown at 25% and 75% activated inputs.

ensure that the full-scale range of the MAC output matches
the dynamic range of the ADC. For current programming, the
voltage–current two-step write driver program the CIM macro
by two steps: a fixed voltage (0.52 V) is written to the eDRAM
cell in the first step, followed by fine-tuning the storage-node
voltage using a fixed current (100 nA) in the second step. For
voltage programming, the current-domain fine-tuning step is
omitted, and a fixed voltage (0.52 V) is stored in the storage
node of the eDRAM. The transfer functions of different CIM
columns with voltage and current programming performed
on the same macro are shown in Fig. 15. As can be seen,
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TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART CIM MACROS

Fig. 15. Measured transfer functions of CIM columns with different pro-
gramming methods performed on the same macro. (a) Voltage programming.
(b) Current programming.

a 2.2× macro-level variation reduction is achieved with the
proposed current-programming technique. To measure the

programming speed of the proposed voltage–current two-
step write driver, we program the 15-level weights to the
CIM macro. The programming process involved a fixed
voltage-domain coarse writing time of 5 ns, followed by
different current-domain fine-tuning times ranging from 10 to
70 ns in increments of 10 ns. By sweeping the activations and
collecting the average outputs of different columns, the corre-
sponding transfer functions are measured, as shown in Fig. 16.
For the large weights, the storage node of eDRAM cannot be
charged and settled to target values due to insufficient current-
domain fine-tuning time. Therefore, these transfer functions
cannot achieve the target dynamic ranges. However, as the
fine-tuning time increases, the transfer functions of different
weights become more separated and gradually reach the target
dynamic ranges. It can be seen that the transfer functions of
all weights are settled at 65 ns, which match well with the
simulation.

B. Retention Time and NN Characteristics

The analog weights in CIM cells suffer leakage, so we char-
acterize the retention time of the CIM macro. The retention
time is measured according to the following steps. First, the
data in all CIM cells are written to “+7/−7”. Subsequently,
an immediate readout of the programed values is performed.
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Fig. 16. Measured transfer functions of 15 weight levels with 15-/25-/65-/75-ns programming time.

Fig. 17. Measured retention time bit map when positive and negative weights
are programed.

Different from the multi-row accessing in CIM mode, the data
in macro are readout row-by-row via the ADCs. In addition,
the RWL pulse width is tuned to leverage the dynamic range
of ADCs. Then, the data in the macro are readout again
after a known retention time. By subtracting the two readout
values, the corresponding drift value of the eDRAM cell
during the known retention time is obtained. With the drift
value calculated in this way, the error caused by ADC offset
is canceled. The measured retention bit map and retention time
distribution are shown in Figs. 17 and 18, respectively. Within
0.4 ms, 99.7% of cells realize less than 1-LSB drift.

To validate the inference capability of the analog CIM
macro, a 4-b-quantized ResNet CNN [1] is trained to perform

Fig. 18. Measured retention time distribution when positive and negative
weights are programed.

the CIFAR10 image classification. The reference software
accuracy is 91. 67% on the CIFAR10 dataset, and our hardware
achieves 90.78% under fresh state and >90% with 0.4 ms
retention time, as shown in Fig. 19. The refresh overheads
are also measured, as shown in Fig. 20. During one refresh
cycle, the measured energy consumption and delay are 1204 pJ
and 64 × 65 ns = 4.16 µs, respectively. To ensure 90%
classification accuracy, a refresh interval of 0.4 ms is required,
which allows the macro to perform 2.2k computing cycles
(One computing cycle = 180 ns). Thus, the refresh overhead of
throughput is only 4.16 µs/(400–4.16 µs) = 1.1%. In addition,
within a 180-ns computing cycle, the macro simultaneously
executes 64 × 64 MACs. Thus, the total number of operations
performed by the macro during a single refresh interval
amounts to 2.2k ×2×64×64 (1 MAC = 2 operations). Con-
sequently, the refresh energy is amortized to 1204 pJ/(2.2k ×

2 × 64 × 64) = 0.07 fJ/operation. Without the refresh energy,
the measured 4-b-MAC energy efficiency is 233–304 TOPS/W,
which is equivalent to 3.29–4.29 fJ/operation. When consid-
ering the refresh energy, the 4-b-MAC energy increased to
3.36–4.36 fJ/operation (i.e., 229–298 TOPS/W). In current-
programming CIM, the storage-node capacitance controls the
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Fig. 19. DNN performance of prototype chip.

Fig. 20. Refresh overhead of (a) throughput and (b) energy consumption.

trade-off between compute accuracy/refresh overhead and den-
sity. In this prototype chip, the addition of a 10-fF MOM
capacitor on the eDRAM storage node ensures an almost
negligible refresh cost. However, the added MOM capacitor
dominates the cell layout, resulting in a 2-µm2/b normalized
area. This cell area can be further optimized based on the
required cell SNR and retention time.

V. CONCLUSION

In summary, this work presents and demonstrates a
current-programming CIM macro with 3T1C MLC eDRAM
cells. The current-programming technique enables 3T1C cell
to operate at sub-micromaphere currents with reduced vari-
ations, which significantly improves the compute SNR and
energy efficiency. Furthermore, this technique also allows
for MLC programming without the need for calibration.
The dynamic-cascode read structure in 3T1C cell reduces

the computing-current sensitivity to bitline voltage. In addi-
tion, a voltage–current two-step write driver is proposed
to speed up the sub-micromaphere-current programming.
A 65-nm prototype demonstrates a 2.2× reduction in
macro-level variation through current programming. With a
refresh interval of 0.4 ms, the macro achieves >90% infer-
ence accuracy on CIFAR10. With input sparsity ranging
from 25% to 75%, the macro achieves energy efficiencies of
233–304 TOPS/W for 4-b-MAC operations.
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