
1

LayoutCopilot: An LLM-powered Multi-agent
Collaborative Framework for Interactive Analog

Layout Design
Bingyang Liu†, Haoyi Zhang†, Xiaohan Gao, Zichen Kong Student Member, IEEE,

Xiyuan Tang Senior Member, IEEE, Yibo Lin Member, IEEE, Runsheng Wang Member, IEEE,
Ru Huang Fellow, IEEE

Abstract—Analog layout design heavily involves interactive
processes between humans and design tools. Electronic Design
Automation (EDA) tools for this task are usually designed to
use scripting commands or visualized buttons for manipulation,
especially for interactive automation functionalities, which have
a steep learning curve and cumbersome user experience, making
a notable barrier to designers’ adoption. Aiming to address such
a usability issue, this paper introduces LayoutCopilot, a pio-
neering multi-agent collaborative framework powered by Large
Language Models (LLMs) for interactive analog layout design.
LayoutCopilot simplifies human-tool interaction by converting
natural language instructions into executable script commands,
and it interprets high-level design intents into actionable sugges-
tions, significantly streamlining the design process. Experimental
results demonstrate the flexibility, efficiency, and accessibility of
LayoutCopilot in handling real-world analog designs.

Index Terms—Large language model, Multi-agent, Analog
layout design, Interactive layout editing.

I. INTRODUCTION

Analog layout design is a critical phase in analog circuit de-
sign that relies heavily on the manual effort of skilled design-
ers, as shown in Figure 1 A. This dependence is largely due to
the complexity of analog circuit performance models and the
additional considerations such as symmetry, matching, signal
flow, and other constraints, which pose significant challenges
in generating high-quality layouts with superior performance.
Therefore, efficiently generating high-quality layouts of analog
circuits is a major challenge for both commercial tools and
academic research.

This work is supported in part by the National Science Foundation of China
(Grant No. 62141404, 62125401, 62034007), the Natural Science Foundation
of Beijing, China (Grant No. Z230002), STIC (Grant No. QYJS-2023-2303-
B), and the 111 project (B18001).

† Equal contribution.
B. Liu is with the School of Electronics Engineering and Computer Science,

Peking University, Beijing, China.
H. Zhang and Z. Kong are with the School of Integrated Circuits, Peking

University, Beijing, China.
X. Gao is with the School of Computer Science and the School of Integrated

Circuits, Peking University, Beijing, China.
X. Tang is with the Institute for Artificial Intelligence and the School of

Integrated Circuits at Peking University, and the Beijing Advanced Innovation
Center for Integrated Circuits, Beijing, China.

Y. Lin, R. Wang, and R. Huang are with the School of Integrated Circuits,
Peking University, Beijing Advanced Innovation Center for Integrated Cir-
cuits, Beijing, China. and Institute of Electronic Design Automation, Peking
University, Wuxi, China

Corresponding authors: Yibo Lin (yibolin@pku.edu.cn)

Commercial analog layout design platforms like Cadence
Virtuoso [1] mainly provide manual layout drawing interfaces
and a few interactive layout automation functionalities. How-
ever, the learning curve for such platforms is very steep due
to complicated buttons, shortcut keys, and scripting commands
for manipulation. Their interactive layout automation function-
alities require designers to type all the constraints, which is
extremely tedious and rarely adopted by designers in practice.

Academic studies have focused on both fully automated
analog design methodologies and interactive automation. Over
the past four decades, a series of analog placement & routing
algorithms have been proposed to automate layout design.
These algorithms explore various methods and perspectives,
including traditional algorithmic approaches [2]–[6], domain-
knowledge based methods [7]–[11], and the integration of
machine learning techniques [12]–[14]. All are aimed at
boosting the efficiency and performance of final layout results,
paving the way for the development of fully automated tools.
Recent advancements in fully automated tools for analog
layout design such as ALIGN [15]–[17] and MAGICAL [18]–
[20], have significantly improved design efficiency in analog
layout generation. However, despite their advancements, these
tools often fall short of accommodating the highly customized
needs of analog layout design, as shown in Figure 1 B.
To address this, interactive analog layout editing tools [21],
[22] have been developed to allow designers to modify and
optimize layouts more easily. While these tools offer enhanced
flexibility in layout design, similar to commercial tools, they
also introduce a new usability challenge as designers must
master complex command sets and effectively apply them in
circuit optimization, as shown in Figure 1 C.

The above usability challenges come from the fundamental
gap between human natural language and machine language.
It is not easy to convert both designers’ concrete tasks and
abstract design intents into executable commands for ma-
chines. Recent advances in large language models (LLMs)
bring a new opportunity to bridge the gap. Recently prevailing
models like GPT-3 [23], Llama [24], [25], GPT-4 [26], and
Claude [27], [28] have demonstrated remarkable capabilities in
not only understanding and generating human-like text but also
reasoning and comprehending abstract domain knowledge,
paving the way for innovative applications across various
domains. This evolution, along with advances in knowledge

ar
X

iv
:2

40
6.

18
87

3v
3

 [
cs

.A
R

]
 1

3
Ja

n
20

25

yibolin@pku.edu.cn

2

Disadvantage:
• Inflexible & Hard to finetune result

• Low-quality layout results

Disadvantage:
• Inflexible & Hard to finetune result

• Low-quality layout results

Advantage:

Convenience & High efficiency

B. Workflow of Fully Automated Analog Layout Tools

Disadvantage:
• Require designer writing scripts

• Highly rely on human experience

Disadvantage:
• Require designer writing scripts

• Highly rely on human experience

Advantage:

Flexible & Decent layout quality

C. Workflow of Interactive Analog Layout Tools

In
te

ra
c
ti

v
e
 T

o
o

ls

F
u

ll
y
 A

u
to

m
a
te

d

T
o

o
ls

Schematic

Analog

Constraint

Extraction

Analog

Placement

& Routing

Layout

Schematic

Fully

Automated

Tools

Initial

Layout

Interactive

Placement

& Routing

Kernel

Layout

Designers

Final

Layout

Human Insight

Advantage:
• High-quality layout solutions after interactive adjustment

• Easy to use by taking natural language instructions

• Enhanced design experience and efficiency powered by LLM.

D. Workflow of LLM Powered Interactive Tools

L
L

M
 P

o
w

e
re

d

In
te

ra
c
ti

v
e
 T

o
o

ls

Interactive

Automation

Kernel

Layout

Designers
Scripts

Multi-Agent

LLM

System

Layout Layout

Natural

Language

Human Insight

Disadvantage:

• Very time-consuming

• Steep learning curve

• Cumbersome design process

Schematic Schematic Layout

Advantage:

• High-quality layout solutions

• Fine-grained adjustments

Heavy Manual Effort

Challenging to master

M
a

n
u

a
l
D

e
s
ig

n
 M

e
th

o
d

 w
it

h

H
u

m
a
n

-T
o

o
l

In
te

ra
c

ti
o

n
A. Workflow of Manual Analog Layout Design

Fig. 1. Comparison of workflows in analog layout automation, highlighting
key advantages and disadvantages of manual, fully automated, interactive, and
LLM-powered interactive tools (LayoutCopilot).

retrieval techniques [29] and the proven effectiveness of multi-
agent approaches in tackling complex reasoning tasks [30]–
[32], sets a new stage for enhancing human-tool interaction
in intricate technical tasks. Such advancements have led to
diverse applications within EDA [33]–[40], but mainly focused
on digital circuits, where mature automation solutions have
been widely adopted without heavy human-tool interaction.
Thus, the field of analog layout design presents a unique
opportunity as it has not yet fully explored using LLMs to
tackle layout tool usability challenges.

In this paper, we introduce LayoutCopilot, a pioneering
multi-agent collaborative framework powered by LLMs for
interactive analog layout design. LayoutCopilot is proficient
in processing concrete layout adjustment requests, translating
them into executable commands that reduce the learning curve
associated with interactive tools, as shown in Figure 1 D.
Additionally, it leverages a comprehensive knowledge base
to generate practical suggestions according to the designer’s
high-level design intents, thus addressing the usability chal-
lenges posed by the inherent complexity of analog design.
The main contributions of this paper can be summarized as

follows:
• To the best of our knowledge, LayoutCopilot is the first

LLM-powered interactive analog layout design frame-
work, offering a novel approach to enhance design flexi-
bility and efficiency in analog circuit design.

• We bridge the interaction gap between designers and
analog layout tools with a framework powered by LLMs,
overcoming the usability challenge of layout tools and
refining the methodology of interactive layout design.

• We utilize a multi-agent collaborative framework that
progressively transforms designer requirements into ex-
ecutable commands through coordinated efforts among
multiple LLM agents, achieving high accuracy.

• Bulk testing and experiments on real-world analog de-
signs have shown that LayoutCopilot can accurately ad-
dress the designer’s concrete layout adjustment requests
and offer actionable suggestions to complete layout opti-
mization based on their high-level design intents.

The rest of the paper is organized as follows. Section II
describes the background; Section III explains the detailed im-
plementation; Section IV demonstrates the results; Section V
concludes the paper.

II. PRELIMINARIES

This section reviews the background concepts of our study,
including the integration of LLMs with EDA, prompt engineer-
ing, multi-agent collaboration, and the interactive placement
and routing in analog layout design, additionally outlining the
scope of LayoutCopilot.

A. Integrating LLMs into EDA Applications

Recent advancements in pre-trained large language models
(LLMs) have unveiled new opportunities for enhancing EDA
applications. The ability of LLMs to generate human-like text
and understand complex concepts makes them ideally suited
for integration into EDA tasks, ranging from auto-generating
Hardware Description Language (HDL) code to facilitating
interactive design workflows through conversational interfaces.

One segment of research has focused on harnessing
LLMs to tackle textual or language-based tasks in EDA
autonomously. This includes efforts to auto-generate HDL
code using tools like RTLCoder and VeriGen [33], [34], along
with benchmarks like RTLLM and VerilogEval for assessing
these capabilities [35], [36]. Additionally, RTLFixer [37] is
exploring automated debugging and code repair, whereas
ChipNeMo [38] serves as an engineering assistant chatbot,
facilitating EDA script generation and bug analysis.

Another pathway seeks to help traditional design flows and
existing EDA tools with LLMs, thus enhancing their accessi-
bility and ease of use. This is exemplified by ChatEDA [39]
and ChatPattern [40], which typically feature a conversational
interface that allows designers to express their needs in natural
language, thereby facilitating the indirect manipulation of EDA
tools via LLMs. Introducing conversational interfaces powered
by LLMs helps tackle long-standing usability challenges in
EDA tools. Inspired by conversational interfaces in EDA tools,

3

we applied LLMs to interactive analog layout design. Consid-
ering the custom nature of analog circuits, LayoutCopilot not
only facilitates direct command execution but also generates
actionable suggestions based on high-level design intents,
streamlining the design process.

B. Prompt Engineering

1) Introduction to Prompt Engineering: Prompts are nat-
ural language instructions that provide context to guide the
generative language model. Prompt engineering is the process
of leveraging prompts to enhance model efficacy without
modifying parameters of the core model [41]. The fundamen-
tal concept behind prompt engineering involves formulating
queries or instructions in a manner that allows the model
to understand and respond accurately, leveraging its pre-
trained knowledge. Additionally, prompts can be constructed
or automatically generated to convey information beyond the
pre-trained datasets to the model, thus flexibly adjusting the
model’s responses and enabling the integration of external
knowledge bases. As language models based on the Trans-
former architecture become increasingly prevalent across var-
ious applications, crafting effective prompts that guide these
models to generate useful and accurate outputs has become
critically important.

Compared to other methods of improving LLM perfor-
mance, prompt engineering offers a lightweight solution for
utilizing large models to solve real-world problems. Unlike
traditional methods that require extensive data set creation,
fine-tuning, and repetitive adjusting to enhance a model’s
performance on specific tasks. Prompt engineering allows
practitioners to directly transmit knowledge and methodolo-
gies to the model through carefully designed prompts. This
approach is especially useful in fields where data acquisition
and cleansing are challenging, such as EDA.

2) Application and Advanced Techniques: In-context learn-
ing is a paradigm enabling language models to perform
tasks by learning from only a few examples provided as
demonstrations [42]. One approach of prompt engineering is
to include these examples directly in the prompt, which can
be categorized based on the number of examples provided:
zero-shot, one-shot, and few-shot learning [43]. While prompt
engineering often involves providing such examples, it is not
limited to this method. Another approach leverages abstract
language to guide LLMs’ behavior in generating responses,
using techniques like chain-of-thought and self-refinement to
further enhance model capabilities.

Researchers have developed advanced prompt engineering
techniques to boost LLMs’ problem-solving abilities. Building
on the ‘few-shot learning’ approach [43], researchers have
discovered that an ‘abstract description’ of examples can
sometimes be sufficient, eliminating the need for direct con-
versational examples. Here are a few examples of the above:

• Chain-of-thought guides LLMs to solve problems
through a series of intermediate steps, which improves
LLMs’ reasoning ability by inducing the model to artic-
ulate a multi-step problem-solving process that mimics
human reasoning [44].

TasksTasks

Task 1: First, ...

Task 2: Then, ...

Task 3: Finally, ...

InstructionsInstructions

In task 1, it’s necessary to ...

In task 2, you are required to ...

In task 3, you should ...

For the output format, ensure ...

Instructions

In task 1, it’s necessary to ...

In task 2, you are required to ...

In task 3, you should ...

For the output format, ensure ...

KnowledgeKnowledge

Knowledge 1 ...

Knowledge 2 ...

Knowledge 3 ...

Knowledge

Knowledge 1 ...

Knowledge 2 ...

Knowledge 3 ...

LLM Agent

Single Agent

• Overloaded context

• Performance limitation

Disadvantages:

• Simplified coordination

Advantages:

TaskTask

Task 1: First, ...

InstructionsInstructions

In task 1, it’s necessary to ...

KnowledgeKnowledge

Knowledge 1 ...

Multi Agent

• Scalability to complex tasks

• Improved resource allocation

• Diverse problem-solving strategies

Advantages:

TaskTask

Task 2: Then, ...

KnowledgeKnowledge

Knowledge 2 ...

InstructionsInstructions

In task 2, you are required to ...

...Agent 1 Agent 2

Fig. 2. System comparison: overcoming single agent limitations through
multi-agent collaboration.

• Least-to-most prompting Least-to-most prompting sim-
plifies complex problems into manageable subtasks, tack-
led sequentially, significantly boosting the model’s ability
to solve intricate reasoning tasks [45].

• The Self-refine strategy enhances LLMs’ performance
through an iterative process where the model critiques
and revises its solutions, thereby refining the quality of
its responses [46].

To handle complex reasoning tasks in our application, Lay-
outCopilot integrates various Prompt Engineering techniques,
including those mentioned above. Each agent is tailored ac-
cording to the specific task it performs to achieve better per-
formance. Details about the structure of prompts are presented
in Section III.

3) Automatic Prompt Generation and Retrieval-Augmented
Generation (RAG): Apart from manually configured prompts,
there are also techniques for automatic prompt genera-
tion. A classic example is Retrieval-Augmented Generation
(RAG) [47], which enhances the model’s interaction with
external knowledge bases. As previously mentioned, prompts
often contain a few examples, thus aligning with the ‘few-shot’
approach. RAG allows these examples to be automatically
retrieved from a database or knowledgebase, providing an
interface through which LLMs can access external knowledge
and align their responses accordingly. However, the retrieved
context, combined with system instructions and designer re-
quests, is fed as text input to the LLMs, which could lead to
prompt dilution if the context is overly extensive. This can
result in a decrease in response quality, an issue we have
observed in our experiments. To address this, we employ a
multi-agent methodology to segment different tasks among
several LLM agents, ensuring that knowledge retrieval does
not compromise the performance of other system components.

4

By separating agents with distinct responsibilities, we main-
tain system efficiency even as we integrate context-extensive
retrieval technologies into our framework.

C. Multi-Agent Collaboration with LLMs

The objective of multi-agent collaboration is to enable
multiple autonomous agents to effectively collaborate towards
a shared goal [48]. Figure 2 illustrates the contrast between
the capabilities of single and multi-agent systems, highlight-
ing how multi-agent collaboration significantly enhances the
system’s capacity by leveraging the specialized expertise of
each agent and preventing task interference. This allows the
system to manage a considerably larger workload than possible
without such specialization, leading to improved efficiency and
output quality [49].

After role-playing capabilities were introduced into commu-
nicative agent interactions by [50], [51] proposed a compre-
hensive LLM-based multi-agent collaboration framework that
demonstrated efficiency enhancements in handling complex
tasks. Based on these works, multi-agent methodologies have
been successfully deployed in various applications, proving
their effectiveness in scenarios such as text understanding,
reasoning, mathematics, coding, and tool utilization [52]–
[54]. Furthermore, several improvements have been proposed
to enhance multi-agent collaboration, including [55], which
transfers professional knowledge and management experience
to LLM agents for more structured collaboration, and [48],
which improves cooperation by enabling agents to predict their
collaborators’ actions.

In LayoutCopilot, we have developed a multi-agent collab-
orative framework that divides complex tasks into specialized
subtasks. This strategic division of labor ensures that each
agent can operate within its expertise without diluting the
prompt or compromising other tasks’ performance.

D. Interactive Analog Layout Design

Analog layout automation has engaged many researchers
in recent years and several basic methodologies have
emerged [5], [6], [8]–[11], [13]–[22]. The analog placement
problem can be formulated into a nonlinear optimization prob-
lem. The most common objective function is half-perimeter
wire length (HPWL), indicating the performance of wire
length. Different from digital placement, analog placement will
consider more constraints such as symmetry, array, etc. The
analog routing problem is a pathfinding problem that can be
solved by a typical shortest path algorithm (A-star).

An interactive analog layout design framework offers flexi-
ble adjustments to the layouts while relieving designers from
tedious manual layout drawing. By introducing high-level
interactive controllers, the framework can leverage placement
and routing kernels to automatically adjust the layout. Based
on the interactive layout design framework, designers can
add arbitrary placement constraints and refine the routing
solution according to their design experience. After several
adjustments, designers can finally obtain a high-quality layout.

Layout of Circuit

Interactive Analog

Layout Design Tool
Designer

LayoutCopilot

Fig. 3. Illustration of LayoutCopilot’s functionalities.

E. The Scope of LayoutCopilot

LayoutCopilot functions as a multi-agent collaborative
framework designed to enhance the interaction between de-
signer and layout tools, illustrated by Figure 3. Its primary
objective is to interpret design intents expressed in natural
language and generate actionable commands that effectively
interact with layout tools.

Problem 1. (Objective of LayoutCopilot) Develop an LLM-
powered framework that accepts both high-level design intents
and concrete requests in natural language from designers
and then transforms them into precise executable commands.
These commands aim to manipulate the layout tools directly,
ensuring that the design intents are accurately translated into
layout adjustments.

The main challenges in developing LayoutCopilot involve
coordinating multiple tasks within the system, such as high-
level design intent parsing, device-level layout adjustments,
and generating accurate commands for layout tools—each of
which differs in complexity and focus. These tasks range
from design intent parsing to precise command generation,
which can be challenging for a single-agent system to manage
effectively. Additionally, integrating a knowledge base can
consume substantial model attention and interfere with unre-
lated tasks. To address these issues, LayoutCopilot employs a
multi-agent system that dedicates specific agents to fixed tasks,
enhancing focus and response quality. This setup also allows
agents to draw from the knowledge base while minimizing
adverse effects on other tasks, thereby enhancing the system’s
overall accuracy and efficiency in translating design intents
into actionable layout commands.

III. LAYOUTCOPILOT FRAMEWORK

This section introduces the architecture and functionality
of LayoutCopilot, a multi-agent collaboration framework en-
hanced by LLMs for interactive analog layout design. Lay-
outCopilot enhances the interaction between designers and
layout tools by understanding complex requirements in natural
language, utilizing a knowledge base for solution generation,
and automating layout design. It consists of two primary
components: the Abstract Request Processor and the Concrete
Request Processor, as illustrated in Figure 4. The Abstract
Request Processor initiates the processing of requests, trans-
forming them into concrete requests that adhere to the layout
tool manual. These concrete requests are then transferred to
the Concrete Request Processor, which generates executable

5

Designer Multi-agent System Interactive Layout

Design Tool

Designer

Layout GUI

Abstract Request Processor

Concrete Request Processor

Fully Automated

Analog Placement

Fully Automated

Analog Placement

NetlistNetlist

Fully Automated

Analog Routing

Fully Automated

Analog Routing

Initial Layout

Interactive Analog

Placement

& Routing

Interactive Analog

Placement

& Routing

Layout

After Adjustment

Requests

(In Natural Language)

Abstract RequestsAbstract Requests
Eaxmple:

1. Enhance the CMRR of OTA

2. Reduce the latency of CMP

3. Improve the matching of

this circuit

Concrete RequestsConcrete Requests
Eaxmple:

1. Increase the spacing

between wires (W1,W2)

2. Add symmetry constraint to

MOSFETs (M1,M2)

Script interpreterScript interpreter

Modification Suggestions & Feedback

Various

Requests

Abstract

Requests

Revised Requests

High-level Solutions

Refined

Solutions

Concrete Requests

Concrete

Requests

Task Splitter AgentTask Splitter AgentTask Splitter Agent Code Generator AgentCode Generator AgentCode Generator AgentSubtasks

Manual of layout tool Logical and syntactic rules

Instant Layout

Legalization

Solution Refiner AgentSolution Refiner AgentSolution Refiner Agent

Solution Adapter AgentSolution Adapter AgentSolution Adapter Agent

Analyzer AgentAnalyzer AgentAnalyzer Agent

Knowledge BaseKnowledge Base

Books of analog design
Manual of

layout tool

Knowledge Base

Books of analog design
Manual of

layout tool

SPICE NetlistSPICE Netlist

Classifier AgentClassifier AgentClassifier Agent

Fig. 4. Overview of LayoutCopilot: a multi-agent framework that interprets natural language design intents through abstract and concrete request processors,
coordinating agents to execute precise layout adjustments for interactive placement and routing.

commands to facilitate layout editing. This workflow simpli-
fies interactions between layout tools and designers, enhancing
the overall design process. Detailed discussions on each com-
ponent’s functionality and the rationale for their design are
provided in the subsequent subsections.

A. Abstract Request Processor

The Abstract Request Processor plays a key role in Lay-
outCopilot, managing and processing diverse requests from
designers. It performs a series of functions including classifi-
cation of requests, retrieval of relevant knowledge, iterative
adjustments in collaboration with designers, and analyzing
netlists to transform abstract requests into concrete ones that
align with layout tool manuals. This component is powered
by four specialized LLM agents, each dedicated to a specific
aspect of the processing pipeline: classification, analysis, solu-
tion refinement, and solution adaptation, as shown in Figure 4.

Before we discuss the construction of specific agents, let us
first explain why we use multiple LLM agents to build such a
complex system instead of relying on a single LLM agent to
solve all problems. The reason we divide tasks among multiple
agents instead of relying on a single agent is to mitigate the
”dilution” of prompts, and the distraction of the LLMs’ atten-
tion. In our experiments, we noted that each LLM agent can
effectively handle only a limited context. When provided with
long and complex instructions as prompts, the performance
of LLM handling a task decreases compared to when given
shorter instructions. Furthermore, if the instruction includes
multiple tasks, they tend to ”dilute” each other, resulting in
poorer performance compared to when the instruction contains
only a single task. This phenomenon is similar to the LLMs’
limited attention being split among the tasks. This issue is
particularly pronounced when involving long-text knowledge

retrieval. When transmitting knowledge bases to the LLMs,
they are input either directly as prompts, or through the
LLM provider’s retrieval interface, which also compresses the
content before entering the prompt. In both cases, the prompt’s
content increases. Even after compression, the knowledge
base’s content remains large, meaning that if an agent accesses
the knowledge base, it can only effectively handle tasks around
this knowledge base. Other tasks’ performance would suffer
due to prompt ”dilution.”

Therefore, we adopt a multi-agent structure, dividing tasks
into several independent parts and assigning them to different
agents to ensure each task is handled efficiently. This approach
helps maintain the effectiveness of each agent by preventing
the dilution of prompts and allows the system to manage
complex and varied requests more effectively. Details of these
agents will be shown as follows:

1) Classifier Agent: At the head of the analyzer lies a task
classifier agent, working as a filter to determine designers’
requirements as either concrete or abstract requests based
on the manual of layout tools. Concrete tasks are identified
by their direct translatability into commands or combinations
explicitly supported by the layout tools, for example, ‘add
symmetry between M6 and M7’. Conversely, abstract requests
are recognized for their high-level, conceptual nature, neces-
sitating a comprehensive analysis grounded in the netlist of
circuits and knowledge of layout design to be deconstructed
into executable steps, such as ‘Enhance the matching’ and
‘Improve the CMRR’. Building on these criteria, an LLM
agent executes the task classification. Once classified, the tasks
are directed into two distinct flows: concrete tasks are sent
directly to the Concrete Request Processor for immediate pro-
cessing. At the same time, abstract requests undergo a series of
steps to be transformed into concrete requests before they are
processed in the same manner as concrete requests. Without it,

6

abstract requests may be directly sent to the Concrete Request
Processor, leading to incorrect task processing.

2) Analyzer Agent: The Analyzer Agent is dedicated solely
to the analysis and knowledge retrieval task, which is crucial
given LLMs’ limitations with long context lengths. Tasks that
require extensive context can use up much of this capacity,
potentially diluting prompts and reducing the effectiveness
of other tasks as explained above. To prevent these issues,
this agent focuses exclusively on knowledge retrieval. The
Analyzer Agent operates within a vast knowledge base that
spans specialized literature on analog circuits and layout
design, layout tool manuals, and archives of previous tasks
and solutions. When transmitting the knowledge bases to the
LLMs, they are input either directly as part of prompts or
through the LLM provider’s retrieval interface.

The Analyzer Agent crafts high-level solutions based on
the retrieved knowledge, functioning similarly to a skilled
architect drafting a blueprint before construction and outlining
strategic approaches to the task. For example, when tasked
with ’enhancing the CMRR of an OTA,’ the agent might sug-
gest optimizing component placement to enhance symmetry
and rerouting connections to improve parasitic matching, all
tailored to the specific capabilities of the chosen layout tools.
The high-level solutions are then sent to the Solution Refiner
Agent for refinement and adjustment based on the designer’s
modification suggestions. If the designer is dissatisfied with
the results, the Analyzer Agent will be re-invoked. The revised
request, which includes the designer’s modification sugges-
tions, will be sent back from the Solution Refiner Agent as
the new input for the Analyzer Agent to generate optimized
high-level solutions. This mechanism ensures that the system
can incorporate designer feedback to improve design solutions
for more accurate and targeted results.

3) Solution Refiner Agent: Considering analog designers’
rich experience and highly customized requirements, enhanc-
ing their involvement in the workflow is crucial. The Solution
Refiner Agent facilitates this by presenting high-level solutions
to designers along with detailed evaluations and explanations.
This allows designers to understand the rationale behind each
solution, assess its feasibility, and make informed decisions.
The designer can select from these solutions, modify them
as needed, or provide additional feedback to refine the results
further. If designers find the solutions unsatisfactory, they have
the option to add more details or revert to the Analyzer Agent
for adjustments. This iterative feedback process ensures that
high-level solutions are continuously refined based on the
designer’s expertise, ultimately aligning the final layout with
the designer’s specific requirements and project needs. Once
refined to the designer’s satisfaction, the solutions are then
passed to the Solution Adapter Agent. To illustrate this process
more clearly, the following example dialogue demonstrates the
interactions between the Solution Refiner Agent, other agents,
and the designer. This example also shows the interaction
process among agents; dialogues for other agents follow a
similar structure and are thus omitted for brevity.

Example Dialogue: Solution Refiner Agent Interactions

To Designer:
Improving the performance of your OTA layout can involve...
Here are some potential high-level solutions:
1) Enhance Symmetry with symAdd ...
2) Improve Matching with deviceMove and deviceSwap ...
3) Reduce Parasitics with wireWidth and wireSpacing ...
4) Prevent Crosstalk with wireSpacing ...
5) Improve Routing with netPriority and netTopology...
Please select some of the high-level solutions you would like to
execute, or provide any modifications or suggestions. Once confirmed,
we will convert these into concrete requests for implementation.

Designer: I prefer to enhance the symmetry.
To Designer:

Great choice! You have selected Enhance Symmetry with the
symAdd function.
I will now forward this task to the Solution Adapter for further
interaction...

To Adapter:
We have received a selection from the Designer to Enhance Symme-
try using the symAdd function. The following are detailed require-
ments for enhancing layout symmetry:
1) Confirm the Details: Gather any necessary parameters or specific

configurations needed for the symAdd function from the netlist
and the Designer.

2) Engage with the Designer: If any clarifications or additional
inputs are required, reach out to the Designer for feedback or
modifications.

3) Prepare Concrete Requests: Once all details are confirmed,
convert the task into actionable concrete requests with sufficient
and correct parameters for further processing.

4) Solution Adapter Agent: The Solution Adapter Agent
is the final component of the Abstract Request Processor,
tasked with converting the requests refined in the previous
steps into concrete, actionable requests. Depending on the
complexity and requirements, netlists are either communi-
cated directly to the LLMs during dialogues or stored in a
knowledge base accessed via the LLMs’ retrieval interface.
This agent meticulously analyzes the netlist to extract specific
parameters following the directives from the refined solutions.
For instance, when receiving a refined solution that specifies
‘enhance the symmetry of differential pairs and capacitors,’ the
Solution Adapter Agent locates these components in the netlist
by examining their connectivity and device parameters. It then
formulates concrete requests to apply symmetry constraints to
the identified components, such as ‘add symmetry between
M6 and M7.’ Refined requests may lack the specificity neces-
sary for implementation without the Solution Adapter Agent,
resulting in incomplete or incorrect actions.

Apart from extracting parameters from the netlists, the
Solution Adapter Agent also ensures that the generated re-
quests are compatible with the layout tools, adhering to the
specific syntax and operational requirements of these tools.
This compatibility is crucial for translating refined solutions
into actionable steps, bridging the gap between design intent
and practical implementation. Without this agent, requests sent
to the Concrete Request Processor may fail to be processed,
resulting in errors or incomplete execution of generated com-
mands.

B. Concrete Request Processor
The Concrete Request Processor is dedicated to accurately

translating concrete tasks into executable commands that fulfill
designer requirements via layout tools. The process begins by
decomposing concrete tasks into subtasks, each corresponding

7

I. Role PlayI. Role Play
As an analog IC designer who is proficient

in [Some Skills], You will work with other

designers by collaborating on the Layout design .

II. Workflow OverviewII. Workflow Overview
Here is an overview of the entire workflow

for your reference: [Workflow Overview]

III. Task DescriptionIII. Task Description
As a crucial part of the workflow, here

is your responsibility: [Task Description]

D. PipelineD. Pipeline
Please think step by step following

a pipeline: [Pipeline Description]

E. Information VerificationE. Information Verification
Here are the information needed to handle the task:

[Information List]. Verify if the information is sufficient.

If not, request additional details from the user or upstream agents.

G. External KnowledgeG. External Knowledge
Here is the knowledge you could refer to while

handling the task: [Books, Manuals or Experiences]

F. Interaction GuidelineF. Interaction Guideline
After completing each output, prompt the user to specify the next

steps, or to proceed according to the order outlined in the overview.

An Agent in

LayoutCopilot

Fig. 5. Illustration of the configuration for a single agent in LayoutCopilot.

to a command detailed in the manual of layout tools, akin
to the processes used in [39] and [40]. However, merely
adopting these methods does not guarantee that the generated
commands will execute correctly or achieve the desired results
in this scenario. Distinct from previous works, our approach
incorporates role-playing and task decomposition techniques
while conveying the syntactic and logical rules dictated by
the layout tools’ manuals to the Code Generator Agent. This
enrichment ensures that the command sequences generated
by the agent maintain high accuracy in syntax and logic,
especially when dealing with complex input requests. This
strategic enhancement is committed to improving the precision
and reliability of the process, closely aligning with the specific
operational requirements of the layout tools.

C. Agent Configuration and Prompt Design

Each agent in the LayoutCopilot framework is equipped
with prompts tailored to its designated task. These prompts
are crafted using the prompt engineering techniques described
in Section II, chosen to enhance the overall expressive capabil-
ities of the agents based on experimental results, as illustrated
in Figure 5.

The seven prompt sections are described in detail as follows:
• I. Role Play encourages the agent to adopt a persona that

helps simulate a realistic and professional scenario for
task handling.

• II. Workflow Overview provides agents with an under-
standing of their roles within the whole system, high-
lighting how their outputs influence subsequent stages of
the design process.

• III. Task Description delineates the specific responsibil-
ities and objectives of the agent, ensuring focused and
relevant task execution.

• IV. Pipeline guides agents through a chain-of-thought
approach to tackle the assigned tasks efficiently. This
enhances the agents’ reasoning capabilities and directs
them to break down complex tasks into manageable sub-
tasks, improving their ability to handle intricate problems.

• V. Information Verification instructs the agent to verify
the completeness of the input before proceeding, prompt-
ing for additional information if required. This acts as a
self-refine strategy, effectively preventing errors arising
from incomplete or inaccurate inputs.

• VI. Interaction Guideline directs the agent on interacting
with the designer and other agents, ensuring that the
entire process remains cohesive and efficient.

• VII. External Knowledge enables each agent to access
resources tailored to its role, enhancing the output with
domain-specific insights. The knowledge provided to each
agent is specifically aligned with their functional require-
ments. Books on analog and layout design [56], [57]
are provided exclusively to the Analyzer Agent to build
a comprehensive knowledge base without overwhelming
other agents, as these extensive materials could interfere
with their tasks. Specifically, these books are provided
in text form, serving primarily as a general roadmap.
Additionally, all agents have access to layout tool manu-
als, command lists (as shown in Table I), and examples
of request processing. These resources are provided in
a structured text format with annotations to help the
LLM understand and use the information effectively.
This ensures compatibility with the tools’ syntax and
guides precise and consistent task execution across the
framework.

Regarding the detail of the prompt, we present the Pipeline
section of the Solution Refiner Agent’s prompt as an example,
given that it is the most complex agent.

Solution Refiner Agent Prompt: Pipeline Section
Please proceed according to the following pipeline, depending on the source of the
request:
*If the request comes from the Analyzer Agent, follow Pipeline A; if the request
comes from the Designer, follow Pipeline B.*

Pipeline A: Request from **Analyzer Agent**
Input: A series of layout modification suggestions (i.e. high-level solutions)
generated by the Analyzer Agent: high level solutions
Steps:
- (a) Organize and Present High-Level Solutions: Compile the layout modification
suggestions into a clear and structured format. Provide necessary explanations for
each solution to help the Designer understand their implications and potential
benefits.
- (b) Engage with the Designer: Present the organized solutions to the Designer for
feedback. **Output:** Please distinguish the output given to each recipient with
”—To XXX—”.
- **To Designer:** Organized high-level solutions with explanations for review.

Pipeline B: Request from **Designer**
Input: Designer feedback on previously presented high-level solutions: de-
signer feedback
Steps:
- (a) If the Designer is satisfied with a specific solution, compile the finalized solution
for further interaction.
- (b) If the Designer requests modifications, document the feedback in a structured
format and send it back to the Analyzer Agent for refinement.
Output: Please distinguish the output given to each recipient with ”—To XXX—
”.
- **To Adapter Agent (if Designer is satisfied):** Refined solution(s) finalized by
Designer.
- **To Analyzer Agent (if Designer requests modifications):** Designer’s feedback
and modification requests for further analysis.

8

Command
Interface GUI

Command
List Stream

Command
Interpreter

User Interface

Command Interpreter

Interactive Placement & Routing
Placement
Operations

Routing
Operations

Updated
Layout

Natural Language
Interface

Initial Layout Generation
Configuration

Constraint
Technology

Schematic

Fully Automated
Placement &

Routing Engine

Initial
Layout

Fig. 6. Overview of the interactive layout editor.

TABLE I
INTERACTIVE COMMAND SET.

Command Parameters
deviceMove device vi, destination location (x, y)
deviceSwap devices vi, vj
arrayAdd a list of devices vi, array shape x, y
arraySpace an array group gi, horizontal space x, vertical space y
symAdd devices vi, vj , symmetry axis Ak

netRemove net ni

netReroute net ni

wireWidth wire wi of net nj , new wire width W

wireSpacing
wire wi of net nm, wire wj of net nt, spacing width S

wire wi of net nm, device vj , spacing width S
netPriority a list of nets ni with their priorities
netTopology net ni, rough guide with points pi

For requests from the Analyzer Agent, high-level solutions
are organized and clearly presented to the Designer with ex-
planations through Pipeline A, allowing for informed decision-
making. When receiving feedback from the Designer, the
prompt guides the agent to either send approved solutions to
the Adapter Agent or to send modification requests back to
the Analyzer Agent following Pipeline B. Each step includes
explicit control flow, input and output descriptions as well as
the chain of thought, supplying clarity and precision in the
interaction across agents.

In summary, these prompt components ensure that each
agent operates not only as a specialist in its respective domain
but also as a coherent part of the larger system, enhancing the
overall functionality and efficiency of the LayoutCopilot.

D. Interactive Layout Editor

Interactive layout editor bridges the gap between fully
automated analog layout tools and real-world industrial ap-
plications. Our interactive analog editor is based on previous
interactive works [21], [22] with some extensions. Figure 6
shows the overview of the interactive layout editor. Before
the interactive adjustment flow starts, an initial layout is
given by fully automated tools. These tools take the netlists,

technology files, and some basic constraints as the input.
Based on the initial layout, users can start making interactive
layout adjustments more intuitively through the user interface.
The user interface consists of a natural language interface
and a layout GUI. Compared to the previous script-based
interface [21], [22], users can use natural language to adjust the
analog layout directly. After converting the natural language
into a list of commands in the command set shown in Table I,
the command interpreter will decompose each command into
placement and routing operations. After the adjustment, the
layout result will be shown in the GUI. Users can further
adjust the layout according to the given result.

For placement adjustment, users are provided with seven
different commands. Theoretically, arbitrary placement adjust-
ments can be achieved by the combination of these commands.
move command can move a device to a given location. swap
command can swap the location of two given devices. For
array-based adjustment, the arrayAdd command adds the
array constraints to a group of devices and arraySpace ad-
justs the space between devices in the array group. Symmetry
constraints can be added by symAdd command. With these
commands, users can make placement adjustments easily. For
instance, the Solution Refiner Agent decided earlier to enhance
the symmetry of differential pairs, and the Solution Adapter
Agent identified a differential pair {M6, M7}. Then the layout
modification can be achieved by executing symAdd M6 M7,
generated by the Concrete Request Processor.

For routing adjustment, users are provided with six different
commands. remove and reroute are basic commands for
removing unsatisfied wires and rerouting them. wireWidth
command can change the width of a given net or wire to
improve the layout performance. wireSpacing command
can adjust the spacing between two nets to avoid the signal
cross-talk. netPriority command can designate a specific
routing priority of nets. Manual guidance can be set by
netTopology command, and the final routing solution will
follow the guidance tightly. With these commands, users can
accomplish arbitrary routing adjustments.

IV. EXPERIMENTAL RESULTS

In this section, we will show experiments separately for
concrete and abstract requests, showcasing LayoutCopilot’s
accuracy in handling basic tasks and its capacity to manage
complex and comprehensive circuit optimization tasks. Lay-
outCopilot is adaptable to various LLMs and layout tools,
facilitating flexible deployment across different environments.
In our experiments, we utilize a mature interactive analog
layout design tool [21], [22] for demonstration. Moreover, we
employ different versions of prevailing LLMs to demonstrate
the versatility of LayoutCopilot including GPT-3.5 [23], GPT-
4 [26], and Claude-3 [58].

A. Concrete Requests: Comprehensive Evaluation

To assess the effectiveness of our framework and the
quality of the outputs it generates, we conduct experiments
on concrete requests. These requests are expressed in natu-
ral language that can be straightforwardly transformed into

9

TABLE II
SANITY CHECKS AND COMPARISON FOR SINGLE-AGENT WITH INSTRUCTION VS. MULTI-AGENT WITH AND WITHOUT INSTRUCTION.

Category Single-agent w/ Instruction Multi-agent w/o Instruction Multi-agent w/ Instruction
GPT-3.5 GPT-4 Claude-3 Avg. GPT-3.5 GPT-4 Claude-3 Avg. GPT-3.5 GPT-4 Claude-3 Avg.

Formatting 71.14% 90.91% 99.25% 87.20% 82.00% 97.92% 99.83% 93.25% 95.38% 99.76% 99.92% 98.26%
Validity 91.36% 93.60% 95.44% 93.47% 96.88% 99.20% 98.40% 98.16% 98.24% 99.28% 98.88% 98.77%
Syntax 67.11% 88.87% 95.24% 83.74% 79.20% 95.28% 97.76% 90.75% 92.65% 97.20% 96.96% 95.60%
Logic 66.44% 83.04% 91.67% 80.38% 76.16% 93.44% 95.20% 88.27% 91.24% 94.24% 98.80% 94.76%

Overall 66.27% 82.91% 90.77% 79.98% 75.76% 93.36% 94.56% 87.89% 90.92% 93.92% 96.80% 93.75%

command sequences for back-end layout tools. The concrete
requests we crafted include detailed scenarios and explicit
command directives designed to emulate interactions that
designers might have with LayoutCopilot. Given the limited
accessibility of real IC design data, we choose synthesized data
for large-scale testing. To provide a clearer understanding of
the types of requests generated, examples are provided below
that represent typical testing cases used in our evaluation.

Example Requests for Testing Case

Request 1: I have received a partially completed analog layout design, and I need to
make some adjustments to improve the overall performance and routing efficiency.
First, I would like to add symmetry constraints between devices M1 and M3, as
well as M5 and M7, since they are part of a differential pair and should be laid out
symmetrically. Next, I need to swap the positions of devices M11 and M13, as the
current placement is causing significant routing congestion in that area of the layout.
After making these initial placement changes, I will run the route command to
see the updated routing results.

Request 2: Looking at the routing, I notice that net2 and net4 are critical signals
that need to be as closely matched in length as possible. To achieve this, I will use
the netTopology command to add guide points for net2 at coordinates (4500,
6800) and for net4 at (4800, 6800), so that the router can try to route these nets in a
more symmetric fashion. In addition, I have identified a section of parallel alignment
between net9 and net11 that is too close for comfort. I will use the wwSpacing
command to increase the spacing between wire3 of net9 and wire5 of net11 to 150
units in the horizontal direction, to ensure proper signal integrity.

We utilize GPT-3.5 [43] and Claude-3 [58] to generate a
total of 1,250 cases, consisting of 1,134 valid concrete requests
and 116 invalid requests. The invalid requests typically lack
essential parameters or described operations in an order that
violates the predefined rules in the manual of the layout
tools, and we have verified these manually to confirm their
invalidity. Each valid request can be completed by between 5
and 40 commands in Table I, ensuring a variety of scenarios
in requests. LayoutCopilot processes each concrete request
to generate a command sequence that the layout tool could
execute to fulfill the requirement. To fully validate the per-
formance of LayoutCopilot, we performed a sanity check and
functionality check on those test cases as described below:

1) Sanity Check: To validate the effectiveness of our agent
configuration, we execute experiments under two distinct set-
tings: one with the comprehensive configuration of the LLMs
through prompt engineering as outlined in Section III-C, and
the other by simply providing the LLMs with the layout
tool manual along with a straightforward task description that
included input-output requirements. Additionally, comparative
experiments are conducted using a single-agent setup under
instructed conditions to demonstrate the necessity of the multi-
agent methodology. In the multi-agent scenario, LayoutCopilot
acts as a multi-agent collaborative framework, employing its
Concrete Request Processor to manage requests from the test
set. Conversely, the single-agent configuration merges all agent
prompts mentioned in Section III into a single LLM agent
aimed at encompassing the entire functionality of LayoutCopi-

lot for handling the test requests. To minimize the impact of
different LLM engines on the experimental outcomes, bulk
testing is performed using GPT-3.5, GPT-4, and Claude-3 as
the LLM engines.

Regarding testing standards, the sanity check covers format-
ting, validity, syntax, logic rules, and overall accuracy. (i) For
the output format, the agent is required to generate processing
status and results in JSON following regular text dialogue,
ensuring that layout tools can accurately interpret the content
and implement the necessary layout adjustments. (ii) Validity
is measured by the rate at which the system correctly identifies
and responds to invalid inputs. We expect LayoutCopilot to be
capable of detecting invalid inputs and providing feedback to
designers, such as commands missing specific parameters. (iii)
& (iv) We conduct syntactic and logical verification. Based on
the command set in Table I, we establish four syntactic and two
logical rules to ensure the integrity and logic of the command
sequence. For example, a syntax rule ensures each command
contains the correct number of parameters and one of the logic
rules says that a device cannot appear in multiple symmetry
pairs. Due to the page limit, we do not list all the rules here.
(v) Successful processing of a request that either generates
correctly formatted code adhering to these rules or accurately
identifies an illegal request is considered correct handling and
included in the overall accuracy statistics.

We conduct experiments on the previously mentioned test
set of 1,250 cases following the outlined criteria, with the re-
sults displayed in Table II. Firstly, it is evident that instructions
significantly enhance accuracy across various LLM engines,
with average improvements of 6.49% in logical verification,
4.85% in syntactic verification, and an overall increase of
5.89% in overall accuracy. This confirms the effectiveness
of our LLM agent design described in Subsection III-C.
The case of single-agent without instruction is not listed
because the correctness rate is too low to be informative,
while the comparison of multi-agent with/without instruction
is sufficient to illustrate the above conclusion. Secondly, the
accuracy rates of the single-agent system are consistently
lower than those for the multi-agent system, regardless of
whether instructions and which LLM engines are used. This
demonstrates the effectiveness of introducing a multi-agent
methodology in this application scenario. Furthermore, the
observed slight decrease in syntax performance for Claude-
3 with instructions likely reflects a performance balancing:
while instructions may slightly reduce performance on tasks
already handled well, they improve weaker areas, resulting in
better overall performance. Without instructions, certain tasks
may perform better, but weaker areas can lower the overall
performance. Thus, the value of instructions lies in their
ability to enhance the overall performance balance. Lastly,

10

GPT-4 Claude-3 GPT-3.5 GPT-4 Claude-3 GPT-3.5

w/ Instruction w/o Instruction

Level A

Level B

Level C

92

P
e
rc

e
n
ta

g
e
 %

100

80

60

40

20

0

8

44

56

36

56

8

60

32

8

48
40

24

28

16

44

Fig. 7. Functionality check with different LLM engines across instructional
conditions.
under conditions using Claude-3, multi-agent configuration,
and with instructions, the overall correctness rate of the sanity
check reaches 96.80%. This confirms that LayoutCopilot’s
comprehensive capabilities are sufficient to meet practical
application requirements.

2) Functionality Check: To further assess the functional
correctness of the outputs generated by LayoutCopilot on the
test set, we randomly select 25(about 2%) cases from the
1,250 generated results that have passed the sanity check.
These are subjected to a manual functionality check to verify
if they fully implemented the corresponding requests. Like
the standards used in [39], we categorize the output results
into three levels: A, B, and C. Level A corresponds to output
functionally correct and displays clear analytical reasoning.
Level B indicates outputs where the functionality has minor
flaws, but the analytical reasoning is clear, allowing designers
to identify and rectify issues easily. Level C represents outputs
that fail both functionally and conceptually, offering little
valuable information to help diagnose problems. In practical
scenarios, the last thing we can accept is for LayoutCopilot to
give us advice that is incorrect, unjustified, and difficult to fix.
Thus, eliminating level C is the focus of our design efforts.

We conduct tests using the Concrete Request Processor
both with and without instructions, corresponding to the
multi-agent section in Table 2. The single-agent scenario is
omitted due to its significantly lower pass rate in sanity
check, which does not offer valuable comparative insights.
As summarized in Figure 7, functionality check results with
instructions significantly outperform those without instructions
across different LLM engines: on one hand, Level C, which is
not uncommon without instructions, almost disappears under
instructed conditions, with no more than 8% in GPT-3.5. This
indicates that the use of instructions, as discussed in Section
3.3, substantially enhances the practicality of LayoutCopilot,
where the majority of outputs are either correct or can be
easily corrected through simple interactions. On the other
hand, the proportion of Level A increases by 16% to 32%,
reaching up to 92% with GPT-4 at the highest. Additionally,
the percentage of C level under instructed conditions is near
zero regardless of the LLM engine used. This demonstrates
that LayoutCopilot can get good results under conditions
where various LLMs are used as engines, even if there
are gaps in the capabilities of these LLM engines. Overall,
the functionality validation demonstrates that LayoutCopilot’s
design significantly enhances the output quality, proving its

TABLE III
CLASSIFICATION ACCURACY OF THE CLASSIFIER AGENT

ON GPT-3.5 AND CLAUDE-3

Request Type Accuracy (%)
GPT-3.5 Claude-3

Concrete 97.6 100
Abstract 98.1 100

practical utility.

3) Classification Accuracy Evaluation: To evaluate the
accuracy of the Classifier Agent, we conducted experiments
using GPT-3.5 and Claude-3. The test set consisted of 1000
Concrete Requests and 1000 Abstract Requests, generated
following the method detailed in Section IV-A1 to maintain
consistency across experiments. The results, as presented in
Table III, show that the Classifier Agent achieved high accu-
racy across both models. Using GPT-3.5, the agent correctly
identified 976 out of 1000 concrete requests and 981 out
of 1000 abstract requests. With Claude-3, both concrete and
abstract request classifications reached 100% accuracy. Such
high accuracy may be attributed to the relative simplicity of
the task and the clarity of the classification criteria, as well as
the strong enough pre-trained LLMs. These results affirm the
effectiveness and reliability of the Classifier Agent in accu-
rately distinguishing between concrete and abstract requests,
providing strong support for its role in the LayoutCopilot
framework.

B. Abstract Requests: Case Studies

In this subsection, we illustrate LayoutCopilot’s capabili-
ties in addressing abstract requests by optimizing layouts in
real-world designs. The schematics of these two circuits are
shown in Figure 9 and Figure 10, and their layout adjustment
processes are depicted in Figure 8 (a) and (b), respectively.

1) Operational Transconductance Amplifier (OTA): Figure
8(a) showcases the layout optimization process for an OTA,
whose schematic is shown in Figure 9. We employ the MAG-
ICAL [18]–[20] to generate the initial placement layout ①,
without any constraints applied. The initial layout is irrelevant
to our framework, which focuses solely on modifications rather
than origins. From layout ①, we engage LayoutCopilot to
suggest improvements during the placement phase, simulating
real-world scenarios faced by designers. LayoutCopilot pro-
poses a series of high-level solutions, briefly shown as follows:

Designer:
I got an OTA layout, but it has poor performance. How can I improve it?

LayoutCopilot:
Improving the performance of your OTA layout can involve...
Here are some potential high-level solutions:

1. Enhance Symmetry with symAdd ...
2. Improve Matching with deviceMove and deviceSwap ...
3. Reduce Parasitics with wireWidth and wireSpacing ...
4. Prevent Crosstalk with wireSpacing ...
5. Improve Routing with netPriority and netTopology ...
6. ...

Following this, we select the ‘Enhance Symmetry’ option
and provide LayoutCopilot with the netlist, asking for concrete
implementation steps. LayoutCopilot analyzes the netlist and
identifies key circuit components that should have symmetry
constraints applied:

11

(a) OTA adjustment (b) COMP adjustment

① Initial layout.

② Symmetry added to key devices.

③ Symmetry added

to capacitors.

④ Symmetry added to

remaining components.

⑤ After direct routing.

⑥ Adjusted the width of the

power and ground wires.

① Initial layout.

② Optimized the symmetry of

MOSFETs and capacitors

Fig. 8. Interactive LLM-powered layout adjustment on OTA and COMP.

Designer:
Okay, I prefer to start with the Enhance Symmetry optimization since the current
symmetry looks terrible. Here is the circuit netlist: [Netlist].
Which devices should I add symmetry to? Please help me with the corresponding
commands.

LayoutCopilot:
Let's proceed with analyzing the netlist to identify critical devices...
Devices for Symmetry:

1. Differential Input Pair: M34 (net0130 VIM PTAIL VDD) and M35 (net0132
VIP PTAIL VDD) handle the input signals ...

2. Output Stage: M71 (VOP VO1M VDD VDD) and M70 (VOM VO1P VDD
VDD) are used in the output stage ...

3. Tail Current Source: M1 (NTAIL NBIAS TAIL GND GND) functions as a
tail current source...

4. ...
Command Sequence:

symAdd M34 M35 # Differential input stage.
symAdd M71 M70 # Output stage.
symAdd M1 M1 # Self-symmetry for tail.
...

After executing these commands, the resultant layout is
shown in ②. Observing layout ②, we note that large capacitors
were not symmetrically constrained, leading to a loose and
cluttered arrangement. Upon receiving more concrete requests
from us, LayoutCopilot applies symmetry constraints to all
capacitors based on sizing results and connectivity, resulting
in layout ③. For the sake of simplicity, the subsequent replies
are not shown specifically.

Further, we direct LayoutCopilot to apply symmetry to all
possible components, including resistors that were previously
unconsidered. After identifying suitable components in the
netlist, LayoutCopilot generates and executes the correspond-
ing commands, yielding layout ④. With the placement ap-
pearing optimally refined visually, we proceed with a basic
routing command to produce layout ⑤. Subsequent post-layout
simulation reveals excessive parasitics, leading us to seek
further solutions from LayoutCopilot. To address these issues,
we engaged in a detailed examination of the critical nets and
implemented priority routing strategies as follows:

Designer:
After symmetry, let’s have some improvements on Routing as well, I would like to
give higher priority to the critical nets to reduce their wire lengths and parasitics.
Please identify them and help me with the corresponding commands.

LayoutCopilot:
Let's proceed with analyzing the netlist to identify critical nets...
Critical Nets:

1. Input Differential Pair Connections: Gate and drain of M34 (net0130 VIM
PTAIL VDD) and M35 (net0132 VIP PTAIL VDD) ...

2. Output Differential Pair Connections: Gate and drain of M71 (VOP VO1M
VDD VDD) and M70 (VOM VO1P VDD VDD) ...

3. Input Stage Compensation Capacitor Connections: Connections of C3 (VIM
net096 GND) and C2 (VIP net092 GND) ...

4. Load Compensation Capacitor Connections: ...
Command Sequence:

netPriority net0130 10 # Drain of M34.
netPriority VIM 10 # Gate of M34.
netPriority net0132 10 # Drain of M35.
netPriority VIP 10 # Gate of M35.
...
netPriority net096 8 # Connection of C3.
netPriority net092 8 # Connection of C2.
...

Subsequent to modifying the routing priority as per the
above commands, we also increased the wire widths of power
and ground lines (not elaborated here due to space constraints),
finally achieving the results shown in layout ⑥. With the post-
layout results now meeting our specifications as shown in
Table V, we terminated the iterative optimization process.

We conduct the optimization process under TSMC 40nm
technology to verify the circuit performance after modifica-
tions, utilizing Cadence Virtuoso and Mentor Graphics Calibre
for post-layout simulation. As we progressed through the
interactive layout adjustment process with LayoutCopilot, the
layout area initially increased during the placement phase but
eventually reduced to 66% of its original size, as depicted
in Table IV and Figure 8. Given the complex relationship
between placement & routing in analog circuits and their
post-layout performance, improvements do not follow a linear
progression from ① to ⑤, as described earlier for changes
in the layout area. For simplicity, we compare the post-

12

VDD

PBCMO

VIP

PCAS

VO1P

IBIAS

NTAIL

PBCMO VO1M

VON

VIP

N2TAIL

NBCMO

VOP

VIN

N2TAIL

NBCMO

CMFB

NBCMO

CMFB

Gain Path

IBIAS

NTAIL

VCM

VDD

N2TAIL

VDD

NBCMO

VCMCMFB

NTAIL

Bias Common-mode Feedback

Fig. 9. The circuit schematic of the OTA.

VIP VIN

CLK

CLKCLK

VDD

VONVOP

Fig. 10. The circuit schematic of the COMP.

layout performance results between the initial layouts (without
constraints) and the final layouts adjusted through interaction
with LayoutCopilot, summarized in Table V.

In the initial layouts, due to excessive parasitics, the Gain
was negative, the unity-gain bandwidth (UGB) and phase
margin (PM) are substantially poor, and the common-mode
rejection ratio (CMRR) is significantly low, showing a large
discrepancy with the pre-layout schematic results which do
not account for parasitic extractions. After adjustments made

TABLE IV
PLACEMENT AREA STATISTICS.

Benchmark Technology Placement Area
Node Area Ratio

OTA-1

TSMC40

83.4× 124.2µm2 1.00
OTA-2 85.0× 148.9µm2 1.22
OTA-3 80.6× 94.3µm2 0.73
OTA-4 85.4× 80.4µm2 0.66

COMP-1 TSMC28 38.3× 39.7µm2 1.00
COMP-2 24.0× 46.9µm2 0.74

TABLE V
COMPARISON BETWEEN LAYOUTCOPILOT AND MAGICAL [18]–[20]

WITHOUT CONSTRAINTS.

Benchmark Schematic MAGICAL [18]–[20] LayoutCopilotw/o Constraints

OTA

Gain (dB) 38.63 -8.75 38.26
UGB (MHz) 6.85 – 4.42
CMRR (dB) – 27.3 58.7
PM (degree) 70.98 – 76.28

COMP

CMP Delay (ns) 3.3 6.3 6.7
Noise (uV) 50.3 30.9 13.9

RST Delay (ps) 89.8 165.8 538.7
Power (uW) 19.9 32.0 31.71

using LayoutCopilot, while there remains a disparity in UGB
compared to the schematic results, both Gain and PM have
closely approached the schematic levels, with CMRR showing
substantial improvement over the initial layout. These results
underscore the efficacy of LayoutCopilot in facilitating layout
optimization through natural language interaction and reducing
both the learning and coding time for designers, demonstrating
its potential to serve as a powerful assistant for analog layout
designers.

2) Comparator (COMP) : A similar process for the COMP
adjustments is employed, now utilizing the TSMC 28nm
technology as depicted in Figure 8 (b). The schematic of the
COMP is shown in Figure 10. We optimize the symmetry for
transistors and capacitors through interactions with Layout-
Copilot, transforming an initial layout in ① into the improved
layout in ②. As summarized in the lower half of Table V, the
post-layout simulation result shows that we have significantly
improved noise performance at the cost of delay and enhanced
power efficiency compared to the initial layout. This adjust-
ment process for both the OTA and CMP exemplifies how
LayoutCopilot leverages its comprehensive knowledge base
to provide actionable recommendations, effectively optimizing
the layout of circuits with varying topologies and improving
their post-simulation performance.

V. CONCLUSION

In this work, we propose a multi-agent collaborative frame-
work powered by LLMs for interactive analog layout design.
LayoutCopilot can not only convert natural language instruc-
tions into executable script commands but also interpret high-
level design intents into actionable suggestions for imple-
mentation. Technically, LayoutCopilot employs a multi-agent
methodology alongside prompt engineering. Validated in both
TSMC28 and TSMC40, the experimental results demonstrate
the robustness and benefits of LayoutCopilot. Specifically,
LayoutCopilot achieves high accuracy in handling concrete
requests for layout adjustments and effectively improves lay-
out performance in addressing abstract layout optimization

13

requests. We believe this work can provide new insights into
solving usability issues of interactive EDA tools and facilitate
the development of automation tools for analog circuits.

REFERENCES

[1] Cadence Design Systems, Virtuoso Layout Suite, Cadence Design Sys-
tems, Inc., San Jose, CA, USA, 2023.

[2] K. Lampaert et al., “A performance-driven placement tool for analog
integrated circuits,” IEEE Journal of Solid-State Circuits, vol. 30, pp.
773–780, 1995.

[3] K. Lampaert et al., “Analog routing for manufacturability,” in Proceed-
ings of Custom Integrated Circuits Conference, 1996, pp. 175–178.

[4] E. Malavasi et al., “A routing methodology for analog integrated
circuits.” in ICCAD. Citeseer, 1990, pp. 202–205.

[5] L. Xiao et al., “Practical placement and routing techniques for ana-
log circuit designs,” in 2010 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2010, pp. 675–679.

[6] B. Xu et al., “Hierarchical and analytical placement techniques for
high-performance analog circuits,” in Proceedings of the 2017 ACM on
International Symposium on Physical Design, 2017, pp. 55–62.

[7] B. Basaran et al., “Latchup-aware placement and parasitic-bounded
routing of custom analog cells,” in Proceedings of 1993 International
Conference on Computer Aided Design (ICCAD). IEEE, 1993, pp.
415–421.

[8] H.-C. Ou et al., “Simultaneous analog placement and routing with
current flow and current density considerations,” in Proceedings of the
50th Annual Design Automation Conference, 2013, pp. 1–6.

[9] R. Martins et al., “Current-flow and current-density-aware multi-
objective optimization of analog ic placement,” Integration, vol. 55, pp.
295–306, 2016.

[10] B. Xu et al., “Device layer-aware analytical placement for analog cir-
cuits,” in Proceedings of the 2019 International Symposium on Physical
Design, 2019, pp. 19–26.

[11] K.-H. Ho et al., “Coupling-aware length-ratio-matching routing for
capacitor arrays in analog integrated circuits,” in Proceedings of the
50th Annual Design Automation Conference, 2013, pp. 1–6.

[12] Y. Li et al., “Exploring a machine learning approach to performance
driven analog ic placement,” in 2020 IEEE computer society annual
symposium on VLSI (ISVLSI). IEEE, 2020, pp. 24–29.

[13] Y. Li et al., “A customized graph neural network model for guiding ana-
log ic placement,” in Proceedings of the 39th International Conference
on Computer-Aided Design, 2020, pp. 1–9.

[14] A. Gusmão et al., “Semi-supervised artificial neural networks towards
analog ic placement recommender,” in 2020 IEEE International Sympo-
sium on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.

[15] K. Kunal et al., “ALIGN: Open-Source Analog Layout Automation from
the Ground Up,” in Proceedings of the 56th Annual Design Automation
Conference 2019. Las Vegas NV USA: ACM, Jun. 2019, pp. 1–4.

[16] T. Dhar et al., “ALIGN: A System for Automating Analog Layout,”
IEEE Design & Test, vol. 38, pp. 8–18, Apr. 2021.

[17] S. S. Sapatnekar, “The ALIGN Automated Analog Layout Engine:
Progress, Learnings, and Open Issues,” in Proceedings of the 2023
International Symposium on Physical Design. Virtual Event USA:
ACM, Mar. 2023, pp. 101–102.

[18] B. Xu et al., “MAGICAL: Toward Fully Automated Analog IC Layout
Leveraging Human and Machine Intelligence: Invited Paper,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). Westminster, CO, USA: IEEE, Nov. 2019, pp. 1–8.

[19] H. Chen et al., “MAGICAL: An Open- Source Fully Automated Analog
IC Layout System from Netlist to GDSII,” IEEE Design & Test, vol. 38,
pp. 19–26, 2021.

[20] H. Chen et al., “MAGICAL 1.0: An Open-Source Fully-Automated
AMS Layout Synthesis Framework Verified With a 40-nm 1GS/s Σ∆
ADC,” in 2021 IEEE Custom Integrated Circuits Conference (CICC).
Austin, TX, USA: IEEE, Apr. 2021, pp. 1–2.

[21] X. Gao et al., “Interactive analog layout editing with instant placement
legalization,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC), 2021, pp. 1249–1254.

[22] X. Gao et al., “Interactive Analog Layout Editing With Instant Place-
ment and Routing Legalization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 42, pp. 698–711, Mar.
2023.

[23] T. B. Brown et al., “Language models are few-shot learners,” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran
Associates Inc., 2020.

[24] H. Touvron et al., “Llama: Open and efficient foundation language
models,” https://arxiv.org/abs/2302.13971, 2023.

[25] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat
models,” https://arxiv.org/abs/2307.09288, 2023.

[26] OpenAI et al., “GPT-4 Technical Report,” Mar. 2024, arXiv:2303.08774
[cs].

[27] Anthropic, “Claude 2,” https://www.anthropic.com/news/claude-2, 2023,
accessed: 2023-04-10.

[28] J. Lienig and G. Jerke, “Electromigration-aware physical design of
integrated circuits,” in Proc. VLSI Design, 2005, pp. 77–82.

[29] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks.”

[30] Q. Wu et al., “AutoGen: Enabling Next-Gen LLM Applications via
Multi-Agent Conversation,” Oct. 2023, arXiv:2308.08155 [cs].

[31] S. Rasal, “LLM Harmony: Multi-Agent Communication for Problem
Solving,” Jan. 2024, arXiv:2401.01312 [cs].

[32] S. Hong et al., “MetaGPT: Meta Programming for A Multi-Agent
Collaborative Framework,” Nov. 2023, arXiv:2308.00352 [cs].

[33] S. Liu et al., “RTLCoder: Outperforming GPT-3.5 in Design RTL
Generation with Our Open-Source Dataset and Lightweight Solution,”
Feb. 2024, arXiv:2312.08617 [cs].

[34] S. Thakur et al., “VeriGen: A Large Language Model for Verilog Code
Generation,” ACM Transactions on Design Automation of Electronic
Systems, Feb. 2024, just Accepted.

[35] Y. Lu et al., “RTLLM: An Open-Source Benchmark for Design RTL
Generation with Large Language Model,” Nov. 2023, arXiv:2308.05345
[cs].

[36] M. Liu et al., “Invited Paper: VerilogEval: Evaluating Large Language
Models for Verilog Code Generation,” in 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD). San Francisco, CA,
USA: IEEE, Oct. 2023, pp. 1–8.

[37] Y.-D. Tsai et al., “RTLFixer: Automatically Fixing RTL Syntax Errors
with Large Language Models,” Feb. 2024, arXiv:2311.16543 [cs].

[38] M. Liu et al., “ChipNeMo: Domain-Adapted LLMs for Chip Design,”
Apr. 2024, arXiv:2311.00176 [cs].

[39] Z. He et al., “ChatEDA: A Large Language Model Powered Autonomous
Agent for EDA,” Mar. 2024, arXiv:2308.10204 [cs].

[40] Z. Wang et al., “Chatpattern: Layout pattern customization via natural
language,” https://arxiv.org/abs/2403.15434, 2024.

[41] P. Sahoo et al., “A systematic survey of prompt engineering in
large language models: Techniques and applications,” arXiv preprint
arXiv:2402.07927, 2024.

[42] Q. Dong et al., “A survey on in-context learning,” arXiv preprint
arXiv:2301.00234, 2022.

[43] T. Brown et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[44] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[45] D. Zhou et al., “Least-to-most prompting enables complex reasoning in
large language models,” arXiv preprint arXiv:2205.10625, 2022.

[46] A. Madaan et al., “Self-refine: Iterative refinement with self-feedback,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[47] P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive
nlp tasks,” Advances in Neural Information Processing Systems, vol. 33,
pp. 9459–9474, 2020.

[48] C. Zhang et al., “Proagent: building proactive cooperative agents with
large language models,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, no. 16, 2024, pp. 17 591–17 599.

[49] Z. Xi et al., “The rise and potential of large language model based
agents: A survey,” arXiv preprint arXiv:2309.07864, 2023.

[50] G. Li et al., “Camel: Communicative agents for” mind” exploration of
large scale language model society,” 2023.

[51] Y. Talebirad and A. Nadiri, “Multi-agent collaboration: Harnessing the
power of intelligent llm agents,” arXiv preprint arXiv:2306.03314, 2023.

[52] S. Rasal, “Llm harmony: Multi-agent communication for problem solv-
ing,” arXiv preprint arXiv:2401.01312, 2024.

[53] Q. Wu et al., “Autogen: Enabling next-gen llm applications via multi-
agent conversation framework,” arXiv preprint arXiv:2308.08155, 2023.

[54] W. Chen et al., “Agentverse: Facilitating multi-agent collabora-
tion and exploring emergent behaviors in agents,” arXiv preprint
arXiv:2308.10848, 2023.

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2303.08774
https://www.anthropic.com/news/claude-2
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2401.01312
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2312.08617
http://arxiv.org/abs/2308.05345
http://arxiv.org/abs/2311.16543
http://arxiv.org/abs/2311.00176
http://arxiv.org/abs/2308.10204
https://arxiv.org/abs/2403.15434
http://arxiv.org/abs/2402.07927
http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/2205.10625
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2306.03314
http://arxiv.org/abs/2401.01312
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.10848

14

[55] S. Hong et al., “Metagpt: Meta programming for multi-agent collabora-
tive framework,” arXiv preprint arXiv:2308.00352, 2023.

[56] B. Razavi, Design of Analog CMOS Integrated Circuits. New York:
McGraw-Hill, 2001.

[57] K. Lampaert et al., Analog Layout Generation for Performance and
Manufacturability, ser. The Springer International Series in Engineering
and Computer Science, 501. Springer, 1999.

[58] Anthropic, “Introducing the next generation of claude,” https://www.
anthropic.com/news/claude-3-family, 2024, accessed: 2023-04-10.

Bingyang Liu is currently an undergraduate student
at the School of Electronics Engineering and Com-
puter Science, Peking University, Beijing, China. His
research interests include analog design automation
and ML for EDA.

Haoyi Zhang received the B.S. degree in Micro-
electronics from BeiHang University in 2022. He
is currently pursuing the Ph.D degree in microelec-
tronics with Peking University, Beijing, China. His
research interest inclues analog design automation,
mixed-signal circuit design.

Xiaohan Gao received the B.S. degree in Com-
puter Science from Peking University in 2020.
She currently is a Ph.D. student, advised by Prof.
Yibo Lin, with the School of Computer Science at
Peking University. Her research interests include lay-
out design automation for analog and mixed-signal
circuits, incorporating machine learning techniques
with physical design and design manufacturability,
and abstracting description from layout designs.

Zichen Kong received the B.S. degree from the
School of Electronics Engineering and Computer
Science at Peking University, Beijing, China, in
2023. He is currently pursuing the Ph.D. degree with
the School of Integrated Circuits, Peking University,
Beijing, China. His research interests include CMOS
image sensor and analog design automation.

Xiyuan Tang (S’17 -M’19-SM’24) received the
B.Sc. degree (Hons.) from the School of Microelec-
tronics, Shanghai Jiao Tong University, Shanghai,
China, in 2012, and the M.S. and Ph.D. degree in
electrical engineering from The University of Texas
at Austin, Austin, TX, USA, in 2014 and 2019
respectively.

He is currently an Assistant Professor at Peking
University, Beijing, China. He was a Design En-
gineer with Silicon Laboratories, Austin, TX from
2014 to 2017, where he was involved in the RF

receiver design. From 2019-2021, he was a postdoctoral researcher at the
University of Texas at Austin, Austin, TX. His research interests include
digitally assisted data converters, low-power mixed-signal circuits, and analog
data processing. He

Dr. Tang serves on the Technical Program Committees (TPC) of ISSCC.
He also serves as an associate editor for IEEE Solid-State Circuits Letters. He
was a recipient of IEEE Solid-State Circuits Society Rising Stars in 2020, Best
Paper Award at Silicon Labs Tech Symposium in 2016, National Scholarship
in 2011, and Shanghai Scholarship in 2010.

Yibo Lin (M’19) received the B.S. degree in Mi-
croelectronics from Shanghai Jiaotong University in
2013. He obtained his Ph.D. degree in Electrical
and Computer Engineering from the University of
Texas at Austin in 2018 advised by Prof. David Z.
Pan. He worked as a postdoctoral researcher at the
University of Texas at Austin from 2018 to 2019. He
currently is an assistant professor in the School of
Integrated Circuits at Peking University. His research
interests include physical design, machine learning
applications, and heterogeneous computing in VLSI

CAD. He is a recipient of the Best Paper Awards at preimier EDA/CAD
journals/conferences like TCAD, DAC, DATE, ISPD, etc.

Runsheng Wang (S’07–M’11) received the B.S.
and Ph.D. (highest honors) degrees from Peking
University, Beijing, China, in 2005 and 2010, re-
spectively.

From November 2008 to August 2009, he was
a Visiting Scholar with Purdue University, West
Lafayette, IN, USA. He joined Peking University
in 2010, where he is currently a Professor at the
School of Integrated Circuits and is serving as the
Associate Dean of the School of EECS. He has
authored/coauthored 1 book, 4 book chapters, and

about 200 scientific papers, including more than 40 papers published in
International Electron Devices Meeting (IEDM) and Symposium on VLSI
Technology (VLSI-T). He has been granted 19 US patents and 38 Chinese
patents. His current research interests include nanoscale CMOS devices and
reliability, design automation, and new-paradigm computing.

Dr. Wang was awarded the IEEE EDS Early Career Award by the IEEE
Electron Device Society (EDS), National Distinguished Young Scholars by
the National Natural Science Foundation of China (NSFC), Natural Science
Award (First Prize) by the Ministry of Education (MOE) of China, and many
other awards. He serves on the Editorial Board of IEEE TRANSACTIONS
ON ELECTRON DEVICES, and SCIENCE CHINA: Information Sciences, and
has served on the Technical Program Committee of many IEEE conferences,
including IEDM, IRPS, etc.

Ru Huang (Fellow, IEEE) received the B.S. (Hons.)
and M.S. degrees in electronic engineering from
Southeast University, Nanjing, China, in 1991 and
1994, respectively, and the Ph.D. degree in micro-
electronics from Peking University, Beijing, China,
in 1997. Since 1997, she has been a faculty member
with Peking University, where she is currently a
Boya Chair Professor. She is an elected Academician
of the Chinese Academy of Science, an elected
member of TWAS Fellow. She has authored or
coauthored five books, five book chapters, and more

than 300 papers, including more than 100 papers in IEDM (46 IEDM papers
from 2007 to 2021), VLSI Technology Symposium, IEEE EDL, and IEEE
T-ED. She has delivered over 50 keynote/invited talks at conferences and
seminars. She has been granted over 300 patents including 49 U.S. patents.
Her research interests include nano-scaled CMOS devices, ultra-low-power
new devices, new device for neuromorphic computing, emerging memory
technology, and device variability/reliability.

http://arxiv.org/abs/2308.00352
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

	Introduction
	Preliminaries
	Integrating LLMs into EDA Applications
	Prompt Engineering
	Introduction to Prompt Engineering
	Application and Advanced Techniques
	Automatic Prompt Generation and Retrieval-Augmented Generation (RAG)

	Multi-Agent Collaboration with LLMs
	Interactive Analog Layout Design
	The Scope of LayoutCopilot

	LayoutCopilot Framework
	Abstract Request Processor
	Classifier Agent
	Analyzer Agent
	Solution Refiner Agent
	Solution Adapter Agent

	Concrete Request Processor
	Agent Configuration and Prompt Design
	Interactive Layout Editor

	Experimental Results
	Concrete Requests: Comprehensive Evaluation
	Sanity Check
	Functionality Check
	Classification Accuracy Evaluation

	Abstract Requests: Case Studies
	Operational Transconductance Amplifier (OTA)
	Comparator (COMP)

	Conclusion
	References
	Biographies
	Bingyang Liu
	Haoyi Zhang
	Xiaohan Gao
	Zichen Kong
	Xiyuan Tang
	Yibo Lin
	Runsheng Wang
	Ru Huang

