
EasyACIM: An End-to-End Automated Analog CIM with
Synthesizable Architecture and Agile Design Space Exploration

Haoyi Zhang1, Jiahao Song1, Xiaohan Gao3,
Xiyuan Tang1,2, Yibo Lin1,4,5∗, Runsheng Wang1,4,5, Ru Huang1,4,5

1School of Integrated Circuits 2Institute for Artificial Intelligence, Peking University
3School of Computer Science 4Beijing Advanced Innovation Center for Integrated Circuits

5Institute of Electronic Design Automation, Peking University, Wuxi, China
hy.zhang@stu.pku.edu.cn, yibolin@pku.edu.cn

ABSTRACT

Analog Computing-in-Memory (ACIM) is an emerging architecture to
perform efficient AI edge computing. However, current ACIM designs
usually have unscalable topology and still heavily rely onmanual efforts.
These drawbacks limit the ACIM application scenarios and lead to an un-
desired time-to-market. This work proposes an end-to-end automated
ACIM based on a synthesizable architecture (EasyACIM). With a given
array size and customized cell library, EasyACIM can generate layouts
for ACIMs with various design specifications end-to-end automatically.
Leveraging the multi-objective genetic algorithm (MOGA)-based de-
sign space explorer, EasyACIM can obtain high-quality ACIM solutions
based on the proposed synthesizable architecture, targeting versatile
application scenarios. The ACIM solutions given by EasyACIM have
a wide design space and competitive performance compared to the
state-of-the-art (SOTA) ACIMs.

1 INTRODUCTION

With the emergence of AI technology, the demand for computility has
increased dramatically and the memory-wall effect is becoming more
and more evident. Computing-in-Memory (CIM) is a popular solution
for AI accelerators addressing the memory bottleneck. Exploiting the
structural alignment between a dense 2D array of bit cells and the
dataflow in matrix-vector multiplication, CIM has unique advantages
in energy and throughput over other solutions [1]. The mainstream
CIM can be categorized into two groups ACIM and Digital CIM (DCIM).
Although DCIM has better robustness, ACIM still has great potential
because of high energy efficiency and high density at lower computing
precision [2]. Based on this unique feature, ACIM is able to occupy a
niche in AI edge computing.

Traditional ACIM research has focused on the pursuit of extreme
performance such as high energy efficiency [3, 4], high area efficiency [5,
6], high accuracy [4, 7] or high throughput [8]. As Figure 1 shows, these
designs often have an unscalable topology with fixed array height 𝐻 ,
array width𝑊 , and ADC bits 𝐵ADC. These fixed parameters lead to
the gap between the unscalable CIM macro and different application
scenarios. For example, a transformer for large language model (LLM)
and a convolution neural network (CNN) for image identification are
likely to have different accuracy requirements. A particular CIM macro
may not be accurate enough for the transformer but has energy waste
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3656229

Transformer

Different Applications with Various Requirements

GAP: SNR & Throughput & Energy Trade-off

CNN SNN

a1 a2

q1 q2 k2 v2k1 v1

b1 w0 w1 w2

∑

u

Soma

uth

spikes 01 1 1

Traditional Unscalable Analog CIM Macro

ADC

w1,1 w1,2 w1,n

ADC

ADC
x1 x2 xn

y1

y2

yn

w1

w2

wn

Fixed H / W Fixed ADC BitFixed Throughput

H

W

Figure 1: Unscalable ACIM macro and various scenarios.

for CNN due to the redundant accuracy.While someworks have flexible
ADC bits [5, 9, 10], it is difficult for such reconfigurable designs to
eliminate all the overhead caused by redundant precision, including
area, energy consumption, and throughput.

Beyond the ACIM circuit design itself, the design efficiency is also
very significant. As the electronic design automation (EDA) technology
evolves, some studies have emerged to help CIM circuits benchmark-
ing [11, 12] and modeling [13, 14]. Furthermore, inspired by end-to-end
automated flow for SRAM [15] and SAR ADC [16], AutoDCIM [17]
proposed the first end-to-end automated flow for DCIM. However, the
end-to-end automated flow for ACIM is still a blank slate since ACIM
has a more sophisticated signal-noise ratio (SNR), energy, area, and
throughput trade-off strategies than DCIM. Therefore, a complete end-
to-end flow for ACIM should automatically optimize these trade-offs
rather than leaving them up to users, as is the case with AutoDCIM [17].

In this work, we propose EasyACIM, an end-to-end automated ACIM
with a fully synthesizable ACIM architecture and agile exploration of
design specifications. To narrow the gap between the CIM macro and
different application scenarios, EasyACIM proposes a novel ACIM ar-
chitecture that can easily be implemented with different 𝐻 ,𝑊 , 𝐵ADC,
and throughput. EasyACIM constructs an estimation model for the
particular architecture and leverages the genetic algorithm to auto-
matically explore the Pareto frontier for the synthesizable architecture
with a given array size. Such an approach further improves the design
efficiency which is ignored in AutoDCIM [17]. EasyACIM integrates a

ar
X

iv
:2

40
4.

13
06

2v
1

 [
cs

.A
R

]
 1

2
A

pr
 2

02
4

https://doi.org/10.1145/3649329.3656229

template-based hierarchical placement and routing framework to gen-
erate the final layouts for the ACIM with an agile exploration of design
specifications. The main contributions of this paper can be summarized
as follows:

• We propose a novel synthesizable ACIM architecture leverag-
ing the local compute array and the reusable capacitors that
can be used as CDAC capacitors in SAR ADCs, which is easily
implemented into versatile application scenarios.

• We treat the determination of ACIM parameters as a multi-
objective optimization problem, build estimation models for the
proposed ACIM, and obtain the Pareto frontier by aMOGA-based
(NGSA-II) design space explorer.

• We integrate a template-based hierarchical placement and rout-
ing framework into the EasyACIM, in order to generate the final
layouts according to the Pareto-frontier design specifications.

• As illustrated in the results, EasyACIM can generate ACIMs with
SOTA performance for various applications with a wide design
space where the energy efficiency ranges from 50TOPS/W to
750TOPS/W and the area ranges from 1500F2/bit to 7500F2/bit.

The rest of the paper is organized as follows. Section 2 describes the
background; Section 3 explains the detailed implementation; Section 4
demonstrates the results; Section 5 concludes the paper.

2 PRELIMINARIES

This section will review the background for the ACIM compute model,
Pareto optimization, and layout automation for Analog and Mixed
Signal (AMS) design, respectively.

2.1 ACIM Compute Model

Much research on ACIM has emerged in recent years. Most of them em-
ploy following three in-memory compute models (Figure 2): (a) charge
summing (QS) [18]; (b) current summing (IS) [19]; (c) charge redistri-
bution (QR) [20]. QS and QR are both charge-domain compute models
that are insensitive to the process-voltage-temperature (PVT). However,
such an approach stores information in the form of electrical charges
and requires additional metal capacitance, resulting in additional area
overhead. In more detail, the QR model leverages the redistributing
charge between storage units which is more flexible and extensible for
different computing applications. The QS model generates the results
by summing the charge from the storage units which is more difficult
to support different applications. IS is a current-domain compute model
that usually has higher density but is sensitive to PVT. The information
is stored in the electric current which is also difficult to be adaptive with
various applications. For the consideration of robustness and extensi-
bility, EasyACIM selects QR as the compute model for synthesizable
architecture.

2.2 Pareto Optimization

The trade-off among SNR, energy, throughput, and area in ACIM is
a typical muti-objective optimization problem [21]. It is difficult to
find a single optimal solution, especially when faced with different
application scenarios. Therefore, obtaining the Pareto-frontier set for
the ACIM is a feasible solution. The Pareto-frontier set is made up of
the solution vectors that are not dominated by other vectors. Formally,
a solution vector 𝒖 = [𝑢1, 𝑢2, . . . , 𝑢𝑃]𝑇 is said to pareto-dominate [22]
the solution vector 𝒗 = [𝑣1, 𝑣2, . . . , 𝑣𝑃]𝑇 , in a minimization context, if
and only if:

∀𝑖 ∈ {1, . . . , 𝑁 }, 𝑓𝑖 (𝒖) ≤ 𝑓𝑖 (𝒗)
and ∃ 𝑗 ∈ {1, . . . , 𝑁 } : 𝑓𝑗 (𝒖) < 𝑓𝑗 (𝒗)

(1)

T1

Φ1

T2
Φ2

Tn
Φn

I1
Φ1I1
Φ1

I2
Φ2I2
Φ2

In
ΦnIn
Φn

(a)

C

Vdd -Vo

V1

G1G1

V1

G1

V2

G2G2

V2

G2

Vn

GnGn

Vn

Gn

I0

Current

Sensing

(b)

C1

V1

Φ1

C1

V1

Φ1

C2

V2

Φ2

C2

V2

Φ2

Cn

Vn

Φn

Cn

Vn

Φn

V0

(c)

Figure 2: In-memory compute models: (a) QS (b) IS (c) QR.

The function values of the Pareto-frontier set form the Pareto frontier
for a particular multi-objective optimization problem.

2.3 Layout Automation for AMS Design

The layout design of ACIM is more similar to analog and mixed-signal
(AMS) circuits than digital circuits since the ACIM includes versatile
AMS blocks such as SAR ADC, sense amplifier (SA), and CMOS switch.
Such AMS blocks prevent the designers from using commercial digital
layout automation tools to generate ACIM layouts. Therefore, the layout
automation tools for AMS circuits are more suitable when tackling
ACIM layouts.

Much research has been done on the placement and routing problems
of AMS circuit designs. ALIGN [23] andMAGICAL [24] both construct a
complete framework for AMS designs including placement and routing.
These frameworks already have the ability to generate decent layouts
for AMS designs. After that some independent placement and routing
targeting better performance have emerged, such as SAGERoute [25,
26] and hierechical AMS placement [27]. All of these placement and
routing methodologies are based on the partitioned grids, as Figure 3
shows. Since the grid-based method is easier to extend with versatile
scenarios and honors different constraints in AMS design layouts. In
practice, more constraints such as symmetry, alignment, etc. should be
considered in addition to the basic half-perimeter wire length (HPWL).

VIA UP

RIGHT

LEFT
UP

DOWN

VIA DOWN

3D-Grid-Based Routing 2D-Grid-Based Placement

HPWL

Figure 3: Basic grid-based placement and routing.

Although academia is booming in AMS layout automation, the
automatically-generated layouts may still be unsatisfactory in some
extreme cases. For example, the SRAM cell in ACIM is very dense, and
the routing track is often well-designed by experienced designers. It is
difficult for a fully automated tool to meet all the requirements. There-
fore, we develop a template-based placement and routing method along
with automated approaches to generate high-quality layout solutions
for ACIM utilizing manually designed layout cells.

2

3 EASYACIM FRAMEWORK

An overview of the EasyACIM framework is depicted in Figure 4. The
whole framework takes a customized cell library, synthesizable architec-
ture, and technology files as input. The customized cell library includes
netlists of all the components of ACIM (e.g. SAR logic, SA, 8T SRAM
cell) and layouts of critical components of ACIM (e.g. SA, 8T SRAM cell).
The synthesizable architecture determines the rules for combining these
components. The technology files contain the necessary information
for layout generation (e.g. DRC rules, layer map).

The MOGA-based design space explorer can generate a Pareto-
frontier set at a user-defined array size leveraging NSGA-II, a clas-
sic MOGA. Each solution vector in the Pareto-frontier set contains
four components including array height (𝐻), array width (𝑊), local
array size (𝐿), and ADC precision bits (𝐵ADC). After the automatic
exploration, the users can remove undesired solutions from the Pareto-
frontier set according to their requirements. Via this agile interaction,
the Pareto-frontier set can be further refined to match the desired ap-
plication scenarios. Then the template-based netlist generator as well
as template-based hierarchical placer and router will be conducted
in sequence for each solution of the Pareto-frontier set. Finally, high-
quality ACIM layouts can be generated, ensuring Pareto-frontier design
specifications that align with the user’s requirements.

3.1 Synthesizable Architecture Design

Figure 6 demonstrates the overview of the proposed synthesizable
ACIM architecture as well as the basic operating states. One column
of the proposed ACIM is detailed in Figure 6. Inspired by a novel de-
sign [4], we reuse the compute capacitors𝐶F as the capacitors in CDAC
during the SAR ADC conversion. This is achieved by dividing them into
distinct SAR groups following a ratio of 1:1:2:4:· · · :2𝑛 , aligning with
the capacitance ratio in the CDAC. This approach greatly reduces the
ADC area overhead in the ACIM designs. However, if each 8T SRAM
cell is furnished with an individual capacitor and its corresponding
control circuit, the area overhead will remain substantial. Therefore, we
combine 𝐿 8T-SRAM cells into a local array [20]. The 𝐿 8T-SRAM cells
in a particular local array share the same compute capacitor and control
circuits. Selecting an appropriate 𝐿 introduces a trade-off between area
and throughput.

The proposed ACIM architecture has two operating states: 1)
multiply-accumulate (MAC) state, and 2) ADC conversion state. In

Synthesizable

Architecture

Technology

Files

Customized

Cell Library

Top Flow ControllerTop Flow Controller

Araay Size

(H*W)

Local

Array

Local

Array

SAR

Logic

SAR

Logic
ControlControl

Template-based Hierarchical

Placer and Router

MOGA-based Design Space

Explorer（NSGA-II）

Template-based ACIM

Netlist Generator

Pareto-frontier Set

(H,W,L,BADC)

Pareto-frontier Set

(H,W,L,BADC)
User

Distillation

CIM Layouts for Distilled

Solution Set

User Defined

User Defined

Araay Size

(H*W)

Local

Array

SAR

Logic
Control

Template-based Hierarchical

Placer and Router

MOGA-based Design Space

Explorer（NSGA-II）

Template-based ACIM

Netlist Generator

Pareto-frontier Set

(H,W,L,BADC)
User

Distillation

CIM Layouts for Distilled

Solution Set

User Defined

User Defined

Figure 4: Overview of EasyACIM.

MAC ADC

VSS

VCM

PCH

RBL

RWL

MOUT

RST

M

P[n]

N[n]

P[n-1]

CL

COM/

COMb

PCH

RBL

RWL

MOUT

RST

M

P[n]

N[n]

P[n-1]

CL

COM/

COMb

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

N[n-1]
VDD

VSS

VDD

VSS

compute finished

1st comparison finished

2nd comparison finished

charge redistribution

Figure 5: Timing diagram of the synthesizable ACIM.

the MAC state, both ends of the capacitor 𝐶F are reset to the 𝑉CM at
first. Then, as Figure 5 shows, the RWL turns to 𝑉dd, the RST turns to
𝑉ss, and the MAC operation starts. After the MAC operation, the top
plate of the capacitor will be changed to either 𝑉dd or 𝑉ss, representing
the computation result. In the ADC conversion state, the top plate will
be reset to 𝑉CM again and the charge will redistribute in the bottom
plate of the capacitor. After charge redistribution, the final accumu-
lation result 𝑉x is stored on the RBL. Then the SAR logic starts the
switching procedure to get the final digital result. The P[n] and N[n] is
the switching control signal based on the comparison results of each
round. After 𝐵ADC rounds comparison, the final MAC result with the
precision of 𝐵ADC bits can be obtained. When dealing with a different
𝐵ADC, a CMOS switch will be inserted in the appropriate position of
the RBL. The CMOS switch will remain closed until the charge redistri-
bution is complete. Then the CMOS switch will be opened to separate
the redundant large capacitance, thus saving energy during the ADC
conversion process.

3.2 MOGA-based Design Space Explorer

The MOGA-based design space explorer consists of two parts: 1) ACIM
performance estimation model and 2) NSGA-II-based optimization.
While exploring ACIM design specifications, constructing the ACIM
performance estimation model is more important than the optimization
algorithm itself. The primary focus lies in developing an accurate and ef-
ficient ACIM estimation model, which is our main concentration. With
a robust ACIM estimation model, the requirements of the algorithm can
be appropriately relaxed. We select NSGA-II as the exploration algo-
rithm due to its adeptness in maintaining a superior balance, facilitating
smooth convergence, and preserving diversity within solutions [21].

3.2.1 ACIM Performance Estimation Model. The ACIM can be evalu-
ated from various perspectives, such as SNR, energy, area, and through-
put. EasyACIM adopts a QR mode computation with bottom-plate
charge redistribution. Reference to literature [14], a customized estima-
tion model is constructed for EasyACIM and is detailed as follows.

The total SNR (SNRT) is shown in Equation 2, where SNRpre indicates
the SNR before ADC, and SQNRy indicates the SNR for quantization
noise of ADC.

SNRT =

[
1

SNRpre
+ 1
SQNRy

]−1
(2)

The SNRpre can be breakdown into SNRa and SQNRi. The SNRa is
the noise caused by the analog circuits and SQNRi is the output referred

3

RWL0

RWL1

...

8T Cell8T Cell

8T Cell8T Cell

8T Cell8T Cell

8T Cell8T Cell

RWLL-1

RWLL

RBL

INB0 MOUT

VDD

PCH

M
Mb

M

VDD

VSS VCM

CL

Pb<0>
MOUT

COMb

COM

MOUT

COMb

COM

COMb

COM

MOUT

COMb

COM

MOUT

COMb

COM

Local Array-Shared Computing Cell

C
IM

 I
n

p
u

t
B

u
ff

e
r

CIM Output Buffer

RSTRST
Group Control

PCH
P<0>
N<0>

M Mb P<0>
Pb<0>

Group Control

PCH
P<0>
N<0>

M Mb P<0>
Pb<0>

VCM

SA

SAR Ctrl1

P<0:B-1> N<0:B-1>

N<0>

× B

SAR Group 1SAR Group 1SAR Group 1

SAR Group 2SAR Group 2SAR Group 2

SAR Group 3SAR Group 3SAR Group 3

Group CAP = 1 * CF

CF

Group CAP = 1 * CF

Group CAP = 2 * CF

Local Array 1Local Array 1

Local Array 1Local Array 1

Local Array 1Local Array 1 Local Array 2Local Array 2

SAR Group BSAR Group BSAR Group B

Local Array 1Local Array 1 Local Array 2
B-1

Local Array 2
B-1

Local Array 2Local Array 2

Group CAP = 2B-1 * CF

DOUT<0:B-1>1

L

H
 =

 2
B
 * L

× W

M
Mb

M

VDD

VSS VCM

CL

Pb<0>
MOUT

COMb

COM

N<0>

CF

MAC

MOUT

COMb

COM

1

1

VCM

VCM

0

0

0
VCM

Step 1:

Reset

RST 1RST 1

M
Mb

M

VDD

VSS VCM

CL

Pb<0>
MOUT

COMb

COM

N<0>

CF

MOUT

COMb

COM

0

1

VCM

VCM

1

0/1

0/1
Vss / VDD

Step 2:

Compute

RST 0RST 0

M
Mb

M

VDD

VSS VCM

CL

Pb<0>
MOUT

COMb

COM

N<0>

CF

MOUT

COMb

COM

1

VX

VCM

1

VCM

Step 1:

Simpling

RST 0RST 0

 ADC

VCM

Figure 6: The synthesizable architecture and operating states.

SQNR due to input (weight and activation) quantization.

SNRpre =
𝜎2𝑦o

𝜎2𝑞𝑖 + 𝜎2𝜂a
=

[
1

SNRa
+ 1
SQNRi

]−1
(3)

In equation 3, 𝜎2𝑦o is the variance of the output and 𝜎
2
𝑦o = 𝑁𝜎2𝑤E

[
𝑥2

]
.

𝜎2𝑞𝑖 is the variance of input quantization noise, 𝜎
2
𝜂e is the variance of ana-

log nonlinearity. Their definitions are detailed in 4 and 5, respectively.
Table 1 gives definitions of some basic symbols.

𝜎2𝑞𝑖 =
1
12𝑁Δ2

𝑥𝜎
2
𝑤 + 1

12𝑁Δ2
𝑤E

[
𝑥2

]
(4)

In Equation 4 Δ𝑤 = 𝑤m2−𝐵𝑤+1, Δ𝑥 = 𝑥m2−𝐵𝑥

𝜎2𝜂e =
2
3

(
1 − 4−𝐵𝑤

)
𝑁

(
E

[
𝑥2

]
𝜎2
𝐶0

𝐶2
o

+
2𝜎2

𝜃,o
𝑉 2
dd

+ 𝜎2inj

)
(5)

In Equation 5, 𝐶o is the compute capacitor with standard devia-
tion 𝜎𝐶o = 𝜅

√
𝐶o. 𝜅 is a layout and technology dependent mismatch

coefficient [28]. 𝜎𝜃,o =

√︃
𝑘𝑇
𝐶o

is the themeral noise caused by 𝐶o, 𝑘
is the Boltzmann constant, 𝑇 is the temperature in Kelvin. 𝜎2inj indi-
cates the noise caused by charge injection which is almost eliminated
by the bottom-plate charge redistribution technique and can be ig-
nored in the following calculations. SQNRy is detailed as follows, where
𝜁𝑥 = 𝑥𝑚/𝜎𝑥 , 𝜁𝑤 = 𝑤𝑚/𝜎𝑤 .

SQNRy(dB) = 10 log10
(
𝜎2
𝑦o

𝜎2
𝑞𝑦

)
= 6𝐵𝑦 + 4.8 −

[
𝜁𝑥 (dB) + 𝜁𝑤 (dB)

]
− 10 log10 (𝑁)

(6)

The throughput can be described as Equation 7. 𝑡com is the computa-
tion delay which is much less than ADC’s delay. The delay of ADC can

Table 1: Notation

Symbol Description
𝑁 dot product length
𝐵 precision in bits

𝑥,𝑤, and 𝑦 inputs, weights, and outputs
𝑥m,𝑤m, and 𝑦m the corresponding maximum

𝜎𝑥 , 𝜎𝑤 standard deviation of input and weight

be broken down into setup time 𝑡set and 1-bit conversion time 𝑡conv.
𝑡set should satisfy 𝑡set > 0.69𝜏𝐵ADC, where 𝜏 is the time constant. 𝑡conv
can be estimated by 𝑡conv = 𝑡conv/bit · 𝐵ADC

𝑇 =
𝐻

𝐿
·𝑊 /(𝑡com + 𝑡set + 𝑡conv) (7)

The total average energy for one-bit computing can be defined as
Equation 8. The 𝐸compute and 𝐸control are almost constant for different
design specifications in a given architecture. The power consumption
of ADC with different precision really makes the difference.

𝐸 = 𝐸compute + 𝐸control +
𝐸ADC
𝐻/𝐿 (8)

The 𝐸ADC has an empirical formula [29] described as Equation 9,
where 𝑘1 and 𝑘2 are empirical parameters which can be obtained from
post-layout simulation.

𝐸ADC = 𝑘1 ·
(
𝐵ADC + log2𝑉DD

)
+ 𝑘2 · 4𝐵ADC ·𝑉 2

DD (9)

The average area of ACIM is demonstrated in Equation 10, where
𝐴SRAM is the 8T-SARM cell area, 𝐴LC is the area of local array-shared
computing cell,𝐴COMP is the area of the dynamic comparator and𝐴DFF
is the area of a single dynamic D-type Flip Flop (DFF) in the SAR logic.

𝐴 = 𝐴SRAM + 1
𝐿
· 𝐴LC + 1

𝐻
· 𝐴COMP + 1

𝐻
· 𝐵ADC · 𝐴DFF (10)

3.2.2 NSGA-II-based optimization. Based on the proposed ACIM per-
formance estimation model, we obtain four objective functions 𝑓SNR, 𝑓T,
𝑓E, 𝑓A. Equation 7, 8, 10 clearly demonstrates 𝑓T, 𝑓E, 𝑓A, respectively. The
𝑓SNR can be obtained by simplifying Equations 2-6. The simplified 𝑓SNR
is depicted in Equation 11, where 𝑘3 and 𝑘4 are constant coefficients
related to the data distribution, 𝐶o is the compute capacitor.

SNR(dB) = 6𝐵ADC − 10 log 10𝐻
𝐿

− 10 log 10 𝑘3
𝐶o

+ 𝑘4 (11)

Based on the previous analysis, the multi-objective optimization
problem of ACIM performance can be formulated as Equation 12. The
negative sign in front of 𝑓SNR and 𝑓T means that it is required to solve
for the maximum value. The constraint 𝐻 −𝐿 ≥ 0 guarantees that local
array size 𝐿 can not be larger than the array height 𝐻 and 𝐻

𝐿
− 2𝐵ADC

indicate that the ADC precision is limited by the available capacitors
4

The constraint 𝐻 ·𝑊 = 𝐴𝑟𝑟𝑎𝑦𝑠𝑖𝑧𝑒 guarantees the final array size is
exactly equal to the user-defined array size. Finally, a classic NSGA-II
algotithm [21] is performed and a high-quality Pareto-frontier set can
be obtained efficiently.

min𝑥 𝐹 (𝐻,𝑊 , 𝐿, 𝐵ADC) = [−𝑓SNR,−𝑓T, 𝑓E, 𝑓A]
s.t. 𝐻

𝐿
− 2𝐵ADC ≥ 0

𝐻 − 𝐿 ≥ 0
𝐻 ·𝑊 = 𝐴𝑟𝑟𝑎𝑦𝑠𝑖𝑧𝑒

(12)

3.3 Template-based Hierechical Placer and Router

After obtaining the user-distilled Pareto-frontier set, the template-based
ACIM netlist generator generates netlists for each solution in the user-
distilled Pareto-frontier set. Due to the page limit, we omit the details
on the netlist generator, which follows a straightforward engineer-
ing process. Then, EasyACIM performs template-based hierarchical
placement and routing for the netlists to generate the final layouts.

The fundamental of the proposed placer and router is the classic
grid-based algorithm [25–27]. However, the fully automated layouts
often fail to meet strict design requirements. Therefore, EasyACIM
extends the classic algorithm to support manually designed cells in the
layout automation framework shooting for better performance. Easy-
ACIM leverages the hierarchical framework to facilitate this extension.
Figure 7 depicts the strategy of template-based hierarchical placer and
router. The "Std" layout cell indicates either a real standard cell or PCell
in PDK, or a manually designed cell. In each hierarchy, the placement
and routing inside the "Std" layout cell or subcircuit will be kept, only
the inter-connection routing and over-cell placement are conducted.
For example, in Hierarchy 1 only the interconnection among C1, C2,
S1, and S2 will be routed and these "Std" layout cells or subcircuits will
be placed as a whole. Finally, following a bottom-up strategy, the final
layout can be generated with manual-designed cells.

4 EXPERIMENTAL RESULTS

We perform experiments on a Linux server with an Intel Xeon Gold
6230 CPU @ 2.10GHz. EasyACIM is implemented on the TSMC28 PDK
with 1bx1b computation. The agile design exploration for a particular
array size can be finished in 30 minutes. The layout generation for
a particular solution in the Pareto-frontier set can be done in a few
minutes thanks to the customized cell library and pre-defined routing
tracks for critical nets including power nets and SAR logic control nets.

The main differences between EasyACIM and other design flows
are shown in Table 2. Compared to the traditional flow, EasyACIM can
dramatically accelerate the design cycle and generate design layouts au-
tomatically. In contrast to the AutoDCIM [17], EasyACIM automatically
determines the design parameters (e.g. H, W, L, 𝐵ADC) and performs

S3 S4

C5

S1

T1

C2 S2C1S1

T1

C2 S2C1

CX “Std”Layout Cell SX Subcircuit Top Circuit

C3

C9C8

S5

C4

C6 C7

Hierarchy2

Hierarchy1

Hierarchy3

Hierarchy4

Top Level

T1

Figure 7: Strategy of template-based hierarchical placer and

router.

226um

128 x 128

L=2

2
5

6
u

m 128 x 128

L=8 2
5
6

u
m

131um

510um

64 x 256 L=8

7
5
u

m

(a) (b)

(c)

Figure 8: The layouts of 16kb ACIM with various design specifi-

cations.

Table 2: Comparison with Other CIM Design Flow.

Entry Traditional Flow AutoDCIM [17] EasyACIM

Design type Analog or Digital Digital Analog
Design of layout Manual Automatic Automatic
Design time 1-2 months NA Several hours
Design space Fixed Unoptimized Pareto frontier

Determination of Manual User-defined Automatic
design parameters

agile design space exploration to uncover the Pareto frontier, while
AutoDCIM [17] only takes the user-defined design parameters and
conducts design space exploration without any optimization.

Figure 8 demonstrates the final layout results of a 16kb ACIM with
3-bit ADC precision. Figure 8(a) shows the situation where 𝐻=128,
𝐿=2 shooting for high throughput (3.277TOPS) but at the expense of
area (4504F2/bit). Figure 8(b) depicts a design with a more balanced
performance (throughput=0.813TOPS,area=2610F2/bit). Compared to
Figure 8(b), Figure 8(c) achieved higher SNR and the same throughput
at the expense of area (area=2977F2/bit).

A holistic analysis of EasyACIM design space is shown in Fig-
ure 9. During the design space exploration, 𝐵ADC is set within 8 bits
and 𝐿 is limited to between 2 and 32 to avoid extreme results. Fig-
ure 9(a)(b) shows the overall design space of EasyACIM. Figure 9(c)(d),
Figure 9(e)(f), and Figure 9(g)(h) illustrate the impact of different pa-
rameters 𝐻 , 𝐿, 𝐵ADC on the design space with a given array size. In
Figure 9(a)(b) it can be seen that larger arrays present the potential to
achieve higher SNR and throughput, while smaller arrays prioritize
energy efficiency and area. Figure 9(c)(d) illustrates that a smaller 𝐻
can lead to a higher throughput. However, this comes with limitations
in SNR and an increase in area overhead. Figure 9(e)(f) depicts that
reducing 𝐿 leads to higher throughput and an increased upper bound
of SNR, but incurs additional area overhead. As shown in Figure 9(g)(h),
reducing 𝐵ADC enhances energy efficiency, yet it notably diminishes
the SNR as well.

The most common evaluation metrics of ACIM are energy efficiency
and area. In Figure 10, we compare the design space with the SOTA
ACIM designs. Design A [4], design B [5], design C [8] are SOTA ACIMs
from JSSC/ISSCC in recent years. The Pareto frontier based on energy
efficiency and area is highlighted with blue dashed lines in Figure 10. It
can be seen that EasyACIM can generate high-quality ACIM solutions
with competitive performance to SOTA ACIMs. The ACIM solutions
generated by EasyACIM also have wide design space with energy effi-
ciency ranging from 50TOPS/W to 750TOPS/W and area ranging from
1500F2/bit to 7500F2/bit.

5

(b) (d) (f) (h)

(a) (c) (e) (g)

ArraySize=16kb ArraySize=16kb ArraySize=16kb

ArraySize=16kb ArraySize=16kb ArraySize=16kb

Figure 9: Design Space of EasyACIM: (a) (b) Design space categorized by array size; (c) (d) Design space categorized by 𝐻 with 16kb

array size; (e) (f) Design space categorized by 𝐿 with 16kb array size; (g) (h) Design space categorized by 𝐵ADC with 16kb array size.

��������

������	

������

Figure 10: Comparasion between EasyACIM and SOTA ACIMs.

5 CONCLUSION

In this paper, we propose EasyACIM, the first end-to-end automated
ACIM. Based on a novel synthesizable architecture, EasyACIM can be
easily implemented in various applications with different requirements.
Leveraging the MOGA-based Pareto-frontier explorer and template-
based hierarchical layout placer and router, EasyACIM can generate
high-quality ACIM solutions with competitive performance to SOTA
ACIMs and wide design space where the energy efficiency ranges
from 50TOPS/W to 750TOPS/W and area ranges from 1500F2/bit to
7500F2/bit. Validated in TSMC28, the experimental results demonstrate
the robustness and benefits of EasyACIM.

6 ACKNOWLEDGEMENT

This work was supported in part by the National Science Foundation of
China (Grant No. 62141404, 62125401), the Natural Science Foundation
of Beijing, China (Grant No. Z230002), and the 111 project (B18001).

REFERENCES

[1] N. Verma et al., “In-Memory Computing: Advances and Prospects,” IEEE Solid-State
Circuits Magazine, vol. 11, pp. 43–55, 2019.

[2] C.-J. Jhang et al., “Challenges and Trends of SRAM-Based Computing-In-Memory for
AI Edge Devices,” TCAS-I, vol. 68, pp. 1773–1786, 2021.

[3] S. Cheon et al., “A 2941-TOPS/W Charge-Domain 10T SRAM Compute-in-Memory
for Ternary Neural Network,” TCAS-I, vol. 70, pp. 2085–2097, 2023.

[4] C.-Y. Yao et al., “A Fully Bit-Flexible Computation in Memory Macro Using Multi-
Functional Computing Bit Cell and Embedded Input Sparsity Sensing,” JSSC, vol. 58,
pp. 1487–1495, 2023.

[5] C. Yu et al., “A 65-nm 8T SRAM Compute-in-Memory Macro With Column ADCs for
Processing Neural Networks,” JSSC, vol. 57, pp. 3466–3476, 2022.

[6] A. Biswas et al., “An area-efficient 6t-sram based compute-in-memory architecture
with reconfigurable sar adcs for energy-efficient deep neural networks in edge ml
applications,” in CICC, 2022, pp. 1–2.

[7] B. Yan et al., “A 1.041-Mb/mm 2 27.38-TOPS/W Signed-INT8 Dynamic-Logic-Based
ADC-less SRAM Compute-in-Memory Macro in 28nm with Reconfigurable Bitwise
Operation for AI and Embedded Applications,” in ISSCC. IEEE, 2022, pp. 188–190.

[8] Q. Dong et al., “15.3 A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAMMacro
in 7nm FinFET CMOS for Machine-Learning Applications,” in ISSCC. IEEE, 2020.

[9] C. Yu et al., “A Logic-Compatible eDRAMCompute-In-MemoryWith Embedded ADCs
for Processing Neural Networks,” TCAS-I, vol. 68, pp. 667–679, 2021.

[10] M. Ali et al., “A 65 nm 1.4-6.7 TOPS/W Adaptive-SNR Sparsity-Aware CIM Core with
Load Balancing Support for DL workloads,” in CICC. IEEE, 2023, pp. 1–2.

[11] P.-Y. Chen et al., “NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-
Inspired Architectures in Online Learning,” TCAD, vol. 37, pp. 3067–3080, 2018.

[12] J. Sun et al., “Analog or Digital In-memory Computing? Benchmarking through
Quantitative Modeling,” ICCAD, 2023.

[13] S. K. Gonugondla et al., “Fundamental limits on the precision of in-memory architec-
tures,” in ICCAD. ACM, 2020, pp. 1–9.

[14] S. K. Gonugondla et al., “Fundamental Limits on Energy-Delay-Accuracy of In-Memory
Architectures in Inference Applications,” TCAD, vol. 41, pp. 3188–3201, 2022.

[15] S. Kamineni et al., “MemGen: AnOpen-Source Framework for Autonomous Generation
of Memory Macros,” in CICC. IEEE, 2021, pp. 1–2.

[16] M. Liu et al., “OpenSAR: An Open Source Automated End-to-end SAR ADC Compiler,”
in ICCAD. IEEE, 2021, pp. 1–9.

[17] J. Chen et al., “Autodcim: An automated digital cim compiler,” in DAC, 2023, pp. 1–6.
[18] M. Kang et al., “A Multi-Functional In-Memory Inference Processor Using a Standard

6T SRAM Array,” JSSC, vol. 53, pp. 642–655, 2018.
[19] Z. Jiang et al., “Xnor-sram: In-memory computing sram macro for binary/ternary

deep neural networks,” in 2018 IEEE Symposium on VLSIT, 2018, pp. 173–174.
[20] A. Biswas and A. P. Chandrakasan, “Conv-ram: An energy-efficient sram with embed-

ded convolution computation for low-power cnn-basedmachine learning applications,”
in ISSCC, 2018, pp. 488–490.

[21] J. L. J. Pereira et al., “A Review of Multi-objective Optimization: Methods and Algo-
rithms in Mechanical Engineering Problems,” Archives of Computational Methods in
Engineering, vol. 29, pp. 2285–2308, 2022.

[22] P. Ngatchou et al., “Pareto Multi Objective Optimization,” in Intelligent Systems Appli-
cation to Power Systems. IEEE, 2005, pp. 84–91.

[23] K. Kunal et al., “Invited: Align – open-source analog layout automation from the
ground up,” DAC, pp. 1–4, 2019.

[24] H. Chen et al., “MAGICAL: An Open- Source Fully Automated Analog IC Layout
System from Netlist to GDSII,” IEEE Design & Test, vol. 38, pp. 19–26, 2021.

[25] H. Zhang et al., “Sageroute: Synergistic analog routing considering geometric and
electrical constraints with manual design compatibility,” in DATE, 2023, pp. 1–6.

[26] H. Zhang et al., “Sageroute2.0: Hierarchical analog and mixed signal routing consider-
ing versatile routing scenarios,” in DATE, 2024, pp. 1–6.

[27] K. Zhu et al., “Hierarchical Analog and Mixed-Signal Circuit Placement Considering
System Signal Flow,” TCAD, vol. 42, pp. 2689–2702, 2023.

[28] V. Tripathi and B. Murmann, “Mismatch Characterization of Small Metal Fringe
Capacitors,” TCAS-I, vol. 61, pp. 2236–2242, 2014.

[29] B. Murmann, “Mixed-signal computing for deep neural network inference,” TVLSI,
vol. 29, pp. 3–13, 2021.

6

